Image segmentation algorithms based on deep learning for drone aerial imagery from the Portuguese coastal zone

Detalhes bibliográficos
Autor(a) principal: Martins, Gil Lusquiños
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/33614
Resumo: As human-induced pressures continue to rise in the coastal zone, there is an increasing need to resourcefully predict, detect and monitor environmental patterns to support large scale conservation strategies. The Portuguese coastal zone is the home to profuse biological communities, including mussels, which are a key ecological species for the biodiversity of seashore ecosystems, supporting and shielding a vast amount of invertebrate species. Additionally, the improvement of unmanned aerial devices and high-resolution aerial photography have provided the possibility to produce large temporal and spatial datasets while subsiding both biological and physical disturbances in the ecosystems. On this basis, a low-altitude and high resolution aerial image set was captured by a research team from the Biology Department of the University of Aveiro to measure the coverage, size and density of mussels along the Portuguese shoreline. With this newly-gathered dataset, a group from the Department of Electronics, Telecommunications and Informatics, from the same institution, took the initiative to create computer vision algorithms through deep learning in order to assist the analysis of the collected data and verify the viability of the data-gathering methods. This work presents all the thorough procedures executed to answer the proposed challenge, from the development of a functional pixel-wise image segmentation dataset, to the development of predicting models using renowned architectures in the deep learning community, capable of achieving good results to enable the understanding of the dynamics of the ecosystem and predict the mussel abundance under distinct environmental scenarios. Furthermore, the solution has the potential to grow and be improved further. By exploring a new dataset that may open new doors for understanding and classification of coastal zones, with models that could potentially be re-trained in the future for different kinds of shores and intertidal zones with more and other animal communities, this work also proves the possibility of using deep learning models to analyze image data acquired from drones and hopes to allow further research on the subject and on different types of areas and vegetation.
id RCAP_d02fb8e0b5416a53dba8604627833ffb
oai_identifier_str oai:ria.ua.pt:10773/33614
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Image segmentation algorithms based on deep learning for drone aerial imagery from the Portuguese coastal zoneComputer visionImage segmentationMachine learningDeep learningSemantic segmentationInstance segmentationImage segmentation modelsCoastal zone segmentationAs human-induced pressures continue to rise in the coastal zone, there is an increasing need to resourcefully predict, detect and monitor environmental patterns to support large scale conservation strategies. The Portuguese coastal zone is the home to profuse biological communities, including mussels, which are a key ecological species for the biodiversity of seashore ecosystems, supporting and shielding a vast amount of invertebrate species. Additionally, the improvement of unmanned aerial devices and high-resolution aerial photography have provided the possibility to produce large temporal and spatial datasets while subsiding both biological and physical disturbances in the ecosystems. On this basis, a low-altitude and high resolution aerial image set was captured by a research team from the Biology Department of the University of Aveiro to measure the coverage, size and density of mussels along the Portuguese shoreline. With this newly-gathered dataset, a group from the Department of Electronics, Telecommunications and Informatics, from the same institution, took the initiative to create computer vision algorithms through deep learning in order to assist the analysis of the collected data and verify the viability of the data-gathering methods. This work presents all the thorough procedures executed to answer the proposed challenge, from the development of a functional pixel-wise image segmentation dataset, to the development of predicting models using renowned architectures in the deep learning community, capable of achieving good results to enable the understanding of the dynamics of the ecosystem and predict the mussel abundance under distinct environmental scenarios. Furthermore, the solution has the potential to grow and be improved further. By exploring a new dataset that may open new doors for understanding and classification of coastal zones, with models that could potentially be re-trained in the future for different kinds of shores and intertidal zones with more and other animal communities, this work also proves the possibility of using deep learning models to analyze image data acquired from drones and hopes to allow further research on the subject and on different types of areas and vegetation.À medida que as pressões induzidas pelo homem continuam a aumentar na zona costeira, há uma necessidade crescente de prever, detetar e monitorizar padrões ambientais para apoiar estratégias de conservação em grande escala. A zona costeira portuguesa é o lar de comunidades biológicas abundantes, incluindo mexilhões, que são uma espécie ecológica chave para a biodiversidade dos ecossistemas costeiros, apoiando e protegendo uma vasta quantidade de espécies invertebradas. Adicionalmente, o aperfeiçoamento dos dispositivos aéreos não tripulados e da fotografia aérea de alta resolução proporcionaram a possibilidade de produzir grandes conjuntos de dados temporais e espaciais, reduzindo ao mesmo tempo tanto perturbações biológicas como físicas nos ecossistemas. Nesta base, um conjunto de imagens aéreas de baixa altitude e alta resolução foi capturado por uma equipa de investigação do Departamento de Biologia da Universidade de Aveiro para medir a cobertura, tamanho e densidade dos mexilhões ao longo da costa portuguesa. Com este conjunto de dados reunido, um grupo do Departamento de Eletrónica, Telecomunicações e Informática, da mesma instituição, tomou a iniciativa de criar algoritmos de visão computacional através de deep learning, com o objetivo de auxiliar a análise das imagens recolhidas e verificar a viabilidade dos métodos de recolha de dados. Este trabalho apresenta todos os procedimentos exaustivos efetuados para responder ao desafio proposto, desde o desenvolvimento de um conjunto de dados funcional para segmentação de imagens ao nível do pixel, até ao desenvolvimento de modelos preditivos utilizando arquiteturas de renome na comunidade de deep learning, capazes de alcançar bons resultados para permitir a compreensão da dinâmica do ecossistema e prever a abundância dos mexilhões em cenários ambientais distintos. Além disso, a solução apresenta potencial para crescer e ser futuramente aperfeiçoada. Ao explorar um novo conjunto de dados que poderá abrir novas portas para a compreensão e classificação das zonas costeiras, com modelos que poderão ser potencialmente re-treinados no futuro para diferentes tipos de costas e zonas intertidais com mais e outras comunidades animais, este trabalho prova também a possibilidade de utilizar modelos de deep learning para analisar dados adquiridos através de drones e espera possibilitar uma investigação mais aprofundada no tema e em diferentes tipos de áreas e vegetação.2022-04-05T09:47:40Z2021-10-29T00:00:00Z2021-10-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/33614engMartins, Gil Lusquiñosinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:04:41Zoai:ria.ua.pt:10773/33614Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:05:00.532732Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Image segmentation algorithms based on deep learning for drone aerial imagery from the Portuguese coastal zone
title Image segmentation algorithms based on deep learning for drone aerial imagery from the Portuguese coastal zone
spellingShingle Image segmentation algorithms based on deep learning for drone aerial imagery from the Portuguese coastal zone
Martins, Gil Lusquiños
Computer vision
Image segmentation
Machine learning
Deep learning
Semantic segmentation
Instance segmentation
Image segmentation models
Coastal zone segmentation
title_short Image segmentation algorithms based on deep learning for drone aerial imagery from the Portuguese coastal zone
title_full Image segmentation algorithms based on deep learning for drone aerial imagery from the Portuguese coastal zone
title_fullStr Image segmentation algorithms based on deep learning for drone aerial imagery from the Portuguese coastal zone
title_full_unstemmed Image segmentation algorithms based on deep learning for drone aerial imagery from the Portuguese coastal zone
title_sort Image segmentation algorithms based on deep learning for drone aerial imagery from the Portuguese coastal zone
author Martins, Gil Lusquiños
author_facet Martins, Gil Lusquiños
author_role author
dc.contributor.author.fl_str_mv Martins, Gil Lusquiños
dc.subject.por.fl_str_mv Computer vision
Image segmentation
Machine learning
Deep learning
Semantic segmentation
Instance segmentation
Image segmentation models
Coastal zone segmentation
topic Computer vision
Image segmentation
Machine learning
Deep learning
Semantic segmentation
Instance segmentation
Image segmentation models
Coastal zone segmentation
description As human-induced pressures continue to rise in the coastal zone, there is an increasing need to resourcefully predict, detect and monitor environmental patterns to support large scale conservation strategies. The Portuguese coastal zone is the home to profuse biological communities, including mussels, which are a key ecological species for the biodiversity of seashore ecosystems, supporting and shielding a vast amount of invertebrate species. Additionally, the improvement of unmanned aerial devices and high-resolution aerial photography have provided the possibility to produce large temporal and spatial datasets while subsiding both biological and physical disturbances in the ecosystems. On this basis, a low-altitude and high resolution aerial image set was captured by a research team from the Biology Department of the University of Aveiro to measure the coverage, size and density of mussels along the Portuguese shoreline. With this newly-gathered dataset, a group from the Department of Electronics, Telecommunications and Informatics, from the same institution, took the initiative to create computer vision algorithms through deep learning in order to assist the analysis of the collected data and verify the viability of the data-gathering methods. This work presents all the thorough procedures executed to answer the proposed challenge, from the development of a functional pixel-wise image segmentation dataset, to the development of predicting models using renowned architectures in the deep learning community, capable of achieving good results to enable the understanding of the dynamics of the ecosystem and predict the mussel abundance under distinct environmental scenarios. Furthermore, the solution has the potential to grow and be improved further. By exploring a new dataset that may open new doors for understanding and classification of coastal zones, with models that could potentially be re-trained in the future for different kinds of shores and intertidal zones with more and other animal communities, this work also proves the possibility of using deep learning models to analyze image data acquired from drones and hopes to allow further research on the subject and on different types of areas and vegetation.
publishDate 2021
dc.date.none.fl_str_mv 2021-10-29T00:00:00Z
2021-10-29
2022-04-05T09:47:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/33614
url http://hdl.handle.net/10773/33614
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137705099001856