Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNets
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/IGARSS.2017.8127824 http://hdl.handle.net/11449/232709 |
Resumo: | Vegetation segmentation in high resolution images acquired by unmanned aerial vehicles (UAVs) is a challenging task that requires methods capable of learning high-level features while dealing with fine-grained data. In this paper, we propose a combination of different methods of semantic segmentation based on Convolutional Networks (ConvNets) to obtain highly accurate segmentation of individuals of different vegetation species. The objective is not only to learn specific and adaptable features depending on the data, but also to learn and combine appropriate classifiers. We conducted a systematic evaluation using a high-resolution UAV-based image dataset related to a campo rupestre vegetation in the Brazilian Cerrado biome. Experimental results show that the ensemble technique overcomes all segmentation strategies. |
id |
UNSP_91e8ff0d121806f90c698304e5537cd6 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/232709 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNetsDeep LearningPlant SpeciesSemantic Image SegmentationUnmanned Aerial VehiclesVegetation segmentation in high resolution images acquired by unmanned aerial vehicles (UAVs) is a challenging task that requires methods capable of learning high-level features while dealing with fine-grained data. In this paper, we propose a combination of different methods of semantic segmentation based on Convolutional Networks (ConvNets) to obtain highly accurate segmentation of individuals of different vegetation species. The objective is not only to learn specific and adaptable features depending on the data, but also to learn and combine appropriate classifiers. We conducted a systematic evaluation using a high-resolution UAV-based image dataset related to a campo rupestre vegetation in the Brazilian Cerrado biome. Experimental results show that the ensemble technique overcomes all segmentation strategies.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Department of Computer Science Universidade Federal de Minas GeraisUniversidade Estadual Paulista Instituto de Geociências e Ciências Exatas (IGCE)Universidade Estadual Paulista Instituto de Biociências (IB)Institute of Computing University of CampinasUniversidade Estadual Paulista Instituto de Geociências e Ciências Exatas (IGCE)Universidade Estadual Paulista Instituto de Biociências (IB)Universidade Federal de Minas Gerais (UFMG)Universidade Estadual Paulista (UNESP)Universidade Estadual de Campinas (UNICAMP)Nogueira, KeillerDos Santos, Jefersson A.Cancian, Leonardo [UNESP]Borges, Bruno D. [UNESP]Silva, Thiago S. F. [UNESP]Morellato, Leonor Patricia [UNESP]Torres, Ricardo Da S.2022-04-30T05:29:49Z2022-04-30T05:29:49Z2017-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject3787-3790http://dx.doi.org/10.1109/IGARSS.2017.8127824International Geoscience and Remote Sensing Symposium (IGARSS), v. 2017-July, p. 3787-3790.http://hdl.handle.net/11449/23270910.1109/IGARSS.2017.81278242-s2.0-85041842843Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Geoscience and Remote Sensing Symposium (IGARSS)info:eu-repo/semantics/openAccess2022-04-30T05:29:49Zoai:repositorio.unesp.br:11449/232709Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:50:23.295663Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNets |
title |
Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNets |
spellingShingle |
Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNets Nogueira, Keiller Deep Learning Plant Species Semantic Image Segmentation Unmanned Aerial Vehicles |
title_short |
Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNets |
title_full |
Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNets |
title_fullStr |
Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNets |
title_full_unstemmed |
Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNets |
title_sort |
Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNets |
author |
Nogueira, Keiller |
author_facet |
Nogueira, Keiller Dos Santos, Jefersson A. Cancian, Leonardo [UNESP] Borges, Bruno D. [UNESP] Silva, Thiago S. F. [UNESP] Morellato, Leonor Patricia [UNESP] Torres, Ricardo Da S. |
author_role |
author |
author2 |
Dos Santos, Jefersson A. Cancian, Leonardo [UNESP] Borges, Bruno D. [UNESP] Silva, Thiago S. F. [UNESP] Morellato, Leonor Patricia [UNESP] Torres, Ricardo Da S. |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de Minas Gerais (UFMG) Universidade Estadual Paulista (UNESP) Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
Nogueira, Keiller Dos Santos, Jefersson A. Cancian, Leonardo [UNESP] Borges, Bruno D. [UNESP] Silva, Thiago S. F. [UNESP] Morellato, Leonor Patricia [UNESP] Torres, Ricardo Da S. |
dc.subject.por.fl_str_mv |
Deep Learning Plant Species Semantic Image Segmentation Unmanned Aerial Vehicles |
topic |
Deep Learning Plant Species Semantic Image Segmentation Unmanned Aerial Vehicles |
description |
Vegetation segmentation in high resolution images acquired by unmanned aerial vehicles (UAVs) is a challenging task that requires methods capable of learning high-level features while dealing with fine-grained data. In this paper, we propose a combination of different methods of semantic segmentation based on Convolutional Networks (ConvNets) to obtain highly accurate segmentation of individuals of different vegetation species. The objective is not only to learn specific and adaptable features depending on the data, but also to learn and combine appropriate classifiers. We conducted a systematic evaluation using a high-resolution UAV-based image dataset related to a campo rupestre vegetation in the Brazilian Cerrado biome. Experimental results show that the ensemble technique overcomes all segmentation strategies. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12-01 2022-04-30T05:29:49Z 2022-04-30T05:29:49Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/IGARSS.2017.8127824 International Geoscience and Remote Sensing Symposium (IGARSS), v. 2017-July, p. 3787-3790. http://hdl.handle.net/11449/232709 10.1109/IGARSS.2017.8127824 2-s2.0-85041842843 |
url |
http://dx.doi.org/10.1109/IGARSS.2017.8127824 http://hdl.handle.net/11449/232709 |
identifier_str_mv |
International Geoscience and Remote Sensing Symposium (IGARSS), v. 2017-July, p. 3787-3790. 10.1109/IGARSS.2017.8127824 2-s2.0-85041842843 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Geoscience and Remote Sensing Symposium (IGARSS) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
3787-3790 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128282647855104 |