Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNets

Detalhes bibliográficos
Autor(a) principal: Nogueira, Keiller
Data de Publicação: 2017
Outros Autores: Dos Santos, Jefersson A., Cancian, Leonardo [UNESP], Borges, Bruno D. [UNESP], Silva, Thiago S. F. [UNESP], Morellato, Leonor Patricia [UNESP], Torres, Ricardo Da S.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/IGARSS.2017.8127824
http://hdl.handle.net/11449/232709
Resumo: Vegetation segmentation in high resolution images acquired by unmanned aerial vehicles (UAVs) is a challenging task that requires methods capable of learning high-level features while dealing with fine-grained data. In this paper, we propose a combination of different methods of semantic segmentation based on Convolutional Networks (ConvNets) to obtain highly accurate segmentation of individuals of different vegetation species. The objective is not only to learn specific and adaptable features depending on the data, but also to learn and combine appropriate classifiers. We conducted a systematic evaluation using a high-resolution UAV-based image dataset related to a campo rupestre vegetation in the Brazilian Cerrado biome. Experimental results show that the ensemble technique overcomes all segmentation strategies.
id UNSP_91e8ff0d121806f90c698304e5537cd6
oai_identifier_str oai:repositorio.unesp.br:11449/232709
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNetsDeep LearningPlant SpeciesSemantic Image SegmentationUnmanned Aerial VehiclesVegetation segmentation in high resolution images acquired by unmanned aerial vehicles (UAVs) is a challenging task that requires methods capable of learning high-level features while dealing with fine-grained data. In this paper, we propose a combination of different methods of semantic segmentation based on Convolutional Networks (ConvNets) to obtain highly accurate segmentation of individuals of different vegetation species. The objective is not only to learn specific and adaptable features depending on the data, but also to learn and combine appropriate classifiers. We conducted a systematic evaluation using a high-resolution UAV-based image dataset related to a campo rupestre vegetation in the Brazilian Cerrado biome. Experimental results show that the ensemble technique overcomes all segmentation strategies.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Department of Computer Science Universidade Federal de Minas GeraisUniversidade Estadual Paulista Instituto de Geociências e Ciências Exatas (IGCE)Universidade Estadual Paulista Instituto de Biociências (IB)Institute of Computing University of CampinasUniversidade Estadual Paulista Instituto de Geociências e Ciências Exatas (IGCE)Universidade Estadual Paulista Instituto de Biociências (IB)Universidade Federal de Minas Gerais (UFMG)Universidade Estadual Paulista (UNESP)Universidade Estadual de Campinas (UNICAMP)Nogueira, KeillerDos Santos, Jefersson A.Cancian, Leonardo [UNESP]Borges, Bruno D. [UNESP]Silva, Thiago S. F. [UNESP]Morellato, Leonor Patricia [UNESP]Torres, Ricardo Da S.2022-04-30T05:29:49Z2022-04-30T05:29:49Z2017-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject3787-3790http://dx.doi.org/10.1109/IGARSS.2017.8127824International Geoscience and Remote Sensing Symposium (IGARSS), v. 2017-July, p. 3787-3790.http://hdl.handle.net/11449/23270910.1109/IGARSS.2017.81278242-s2.0-85041842843Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Geoscience and Remote Sensing Symposium (IGARSS)info:eu-repo/semantics/openAccess2022-04-30T05:29:49Zoai:repositorio.unesp.br:11449/232709Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:50:23.295663Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNets
title Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNets
spellingShingle Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNets
Nogueira, Keiller
Deep Learning
Plant Species
Semantic Image Segmentation
Unmanned Aerial Vehicles
title_short Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNets
title_full Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNets
title_fullStr Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNets
title_full_unstemmed Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNets
title_sort Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNets
author Nogueira, Keiller
author_facet Nogueira, Keiller
Dos Santos, Jefersson A.
Cancian, Leonardo [UNESP]
Borges, Bruno D. [UNESP]
Silva, Thiago S. F. [UNESP]
Morellato, Leonor Patricia [UNESP]
Torres, Ricardo Da S.
author_role author
author2 Dos Santos, Jefersson A.
Cancian, Leonardo [UNESP]
Borges, Bruno D. [UNESP]
Silva, Thiago S. F. [UNESP]
Morellato, Leonor Patricia [UNESP]
Torres, Ricardo Da S.
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de Minas Gerais (UFMG)
Universidade Estadual Paulista (UNESP)
Universidade Estadual de Campinas (UNICAMP)
dc.contributor.author.fl_str_mv Nogueira, Keiller
Dos Santos, Jefersson A.
Cancian, Leonardo [UNESP]
Borges, Bruno D. [UNESP]
Silva, Thiago S. F. [UNESP]
Morellato, Leonor Patricia [UNESP]
Torres, Ricardo Da S.
dc.subject.por.fl_str_mv Deep Learning
Plant Species
Semantic Image Segmentation
Unmanned Aerial Vehicles
topic Deep Learning
Plant Species
Semantic Image Segmentation
Unmanned Aerial Vehicles
description Vegetation segmentation in high resolution images acquired by unmanned aerial vehicles (UAVs) is a challenging task that requires methods capable of learning high-level features while dealing with fine-grained data. In this paper, we propose a combination of different methods of semantic segmentation based on Convolutional Networks (ConvNets) to obtain highly accurate segmentation of individuals of different vegetation species. The objective is not only to learn specific and adaptable features depending on the data, but also to learn and combine appropriate classifiers. We conducted a systematic evaluation using a high-resolution UAV-based image dataset related to a campo rupestre vegetation in the Brazilian Cerrado biome. Experimental results show that the ensemble technique overcomes all segmentation strategies.
publishDate 2017
dc.date.none.fl_str_mv 2017-12-01
2022-04-30T05:29:49Z
2022-04-30T05:29:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/IGARSS.2017.8127824
International Geoscience and Remote Sensing Symposium (IGARSS), v. 2017-July, p. 3787-3790.
http://hdl.handle.net/11449/232709
10.1109/IGARSS.2017.8127824
2-s2.0-85041842843
url http://dx.doi.org/10.1109/IGARSS.2017.8127824
http://hdl.handle.net/11449/232709
identifier_str_mv International Geoscience and Remote Sensing Symposium (IGARSS), v. 2017-July, p. 3787-3790.
10.1109/IGARSS.2017.8127824
2-s2.0-85041842843
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Geoscience and Remote Sensing Symposium (IGARSS)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 3787-3790
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128282647855104