Modeling PM2.5 Urban Pollution Using Machine Learning and Selected Meteorological Parameters

Detalhes bibliográficos
Autor(a) principal: Kleine Deters, Jan
Data de Publicação: 2017
Outros Autores: Zalakeviciute, Rasa, Gonzalez, Mario, Rybarczyk, Yves
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/147005
Resumo: Outdoor air pollution costs millions of premature deaths annually, mostly due to anthropogenic fine particulate matter (or PM2.5). Quito, the capital city of Ecuador, is no exception in exceeding the healthy levels of pollution. In addition to the impact of urbanization, motorization, and rapid population growth, particulate pollution is modulated by meteorological factors and geophysical characteristics, which complicate the implementation of the most advanced models of weather forecast. Thus, this paper proposes a machine learning approach based on six years of meteorological and pollution data analyses to predict the concentrations of PM2.5 from wind (speed and direction) and precipitation levels. The results of the classification model show a high reliability in the classification of low (<10 μg/m3) versus high (>25 μg/m3) and low (<10 μg/m3) versus moderate (10-25 μg/m3) concentrations of PM2.5. A regression analysis suggests a better prediction of PM2.5 when the climatic conditions are getting more extreme (strong winds or high levels of precipitation). The high correlation between estimated and real data for a time series analysis during the wet season confirms this finding. The study demonstrates that the use of statistical models based on machine learning is relevant to predict PM2.5 concentrations from meteorological data.
id RCAP_d28d4b04ff797236071f87f3c7ce6f1d
oai_identifier_str oai:run.unl.pt:10362/147005
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Modeling PM2.5 Urban Pollution Using Machine Learning and Selected Meteorological ParametersNEURAL-NETWORKSAIR-POLLUTIONSURFACE WINDWRF MODELPREDICTIONSCALESignal ProcessingComputer Science(all)Electrical and Electronic EngineeringSDG 11 - Sustainable Cities and CommunitiesOutdoor air pollution costs millions of premature deaths annually, mostly due to anthropogenic fine particulate matter (or PM2.5). Quito, the capital city of Ecuador, is no exception in exceeding the healthy levels of pollution. In addition to the impact of urbanization, motorization, and rapid population growth, particulate pollution is modulated by meteorological factors and geophysical characteristics, which complicate the implementation of the most advanced models of weather forecast. Thus, this paper proposes a machine learning approach based on six years of meteorological and pollution data analyses to predict the concentrations of PM2.5 from wind (speed and direction) and precipitation levels. The results of the classification model show a high reliability in the classification of low (<10 μg/m3) versus high (>25 μg/m3) and low (<10 μg/m3) versus moderate (10-25 μg/m3) concentrations of PM2.5. A regression analysis suggests a better prediction of PM2.5 when the climatic conditions are getting more extreme (strong winds or high levels of precipitation). The high correlation between estimated and real data for a time series analysis during the wet season confirms this finding. The study demonstrates that the use of statistical models based on machine learning is relevant to predict PM2.5 concentrations from meteorological data.DEE2010-C2 Robótica e Manufactura Integrada por ComputadorDEE - Departamento de Engenharia Electrotécnica e de ComputadoresCTS - Centro de Tecnologia e SistemasRUNKleine Deters, JanZalakeviciute, RasaGonzalez, MarioRybarczyk, Yves2023-01-05T22:09:45Z20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/147005eng2090-0147PURE: 3820152https://doi.org/10.1155/2017/5106045info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T18:07:43Zoai:run.unl.pt:10362/147005Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T18:07:43Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Modeling PM2.5 Urban Pollution Using Machine Learning and Selected Meteorological Parameters
title Modeling PM2.5 Urban Pollution Using Machine Learning and Selected Meteorological Parameters
spellingShingle Modeling PM2.5 Urban Pollution Using Machine Learning and Selected Meteorological Parameters
Kleine Deters, Jan
NEURAL-NETWORKS
AIR-POLLUTION
SURFACE WIND
WRF MODEL
PREDICTION
SCALE
Signal Processing
Computer Science(all)
Electrical and Electronic Engineering
SDG 11 - Sustainable Cities and Communities
title_short Modeling PM2.5 Urban Pollution Using Machine Learning and Selected Meteorological Parameters
title_full Modeling PM2.5 Urban Pollution Using Machine Learning and Selected Meteorological Parameters
title_fullStr Modeling PM2.5 Urban Pollution Using Machine Learning and Selected Meteorological Parameters
title_full_unstemmed Modeling PM2.5 Urban Pollution Using Machine Learning and Selected Meteorological Parameters
title_sort Modeling PM2.5 Urban Pollution Using Machine Learning and Selected Meteorological Parameters
author Kleine Deters, Jan
author_facet Kleine Deters, Jan
Zalakeviciute, Rasa
Gonzalez, Mario
Rybarczyk, Yves
author_role author
author2 Zalakeviciute, Rasa
Gonzalez, Mario
Rybarczyk, Yves
author2_role author
author
author
dc.contributor.none.fl_str_mv DEE2010-C2 Robótica e Manufactura Integrada por Computador
DEE - Departamento de Engenharia Electrotécnica e de Computadores
CTS - Centro de Tecnologia e Sistemas
RUN
dc.contributor.author.fl_str_mv Kleine Deters, Jan
Zalakeviciute, Rasa
Gonzalez, Mario
Rybarczyk, Yves
dc.subject.por.fl_str_mv NEURAL-NETWORKS
AIR-POLLUTION
SURFACE WIND
WRF MODEL
PREDICTION
SCALE
Signal Processing
Computer Science(all)
Electrical and Electronic Engineering
SDG 11 - Sustainable Cities and Communities
topic NEURAL-NETWORKS
AIR-POLLUTION
SURFACE WIND
WRF MODEL
PREDICTION
SCALE
Signal Processing
Computer Science(all)
Electrical and Electronic Engineering
SDG 11 - Sustainable Cities and Communities
description Outdoor air pollution costs millions of premature deaths annually, mostly due to anthropogenic fine particulate matter (or PM2.5). Quito, the capital city of Ecuador, is no exception in exceeding the healthy levels of pollution. In addition to the impact of urbanization, motorization, and rapid population growth, particulate pollution is modulated by meteorological factors and geophysical characteristics, which complicate the implementation of the most advanced models of weather forecast. Thus, this paper proposes a machine learning approach based on six years of meteorological and pollution data analyses to predict the concentrations of PM2.5 from wind (speed and direction) and precipitation levels. The results of the classification model show a high reliability in the classification of low (<10 μg/m3) versus high (>25 μg/m3) and low (<10 μg/m3) versus moderate (10-25 μg/m3) concentrations of PM2.5. A regression analysis suggests a better prediction of PM2.5 when the climatic conditions are getting more extreme (strong winds or high levels of precipitation). The high correlation between estimated and real data for a time series analysis during the wet season confirms this finding. The study demonstrates that the use of statistical models based on machine learning is relevant to predict PM2.5 concentrations from meteorological data.
publishDate 2017
dc.date.none.fl_str_mv 2017
2017-01-01T00:00:00Z
2023-01-05T22:09:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/147005
url http://hdl.handle.net/10362/147005
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2090-0147
PURE: 3820152
https://doi.org/10.1155/2017/5106045
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817545905270685696