Modeling PM2.5 Urban Pollution Using Machine Learning and Selected Meteorological Parameters
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/147005 |
Resumo: | Outdoor air pollution costs millions of premature deaths annually, mostly due to anthropogenic fine particulate matter (or PM2.5). Quito, the capital city of Ecuador, is no exception in exceeding the healthy levels of pollution. In addition to the impact of urbanization, motorization, and rapid population growth, particulate pollution is modulated by meteorological factors and geophysical characteristics, which complicate the implementation of the most advanced models of weather forecast. Thus, this paper proposes a machine learning approach based on six years of meteorological and pollution data analyses to predict the concentrations of PM2.5 from wind (speed and direction) and precipitation levels. The results of the classification model show a high reliability in the classification of low (<10 μg/m3) versus high (>25 μg/m3) and low (<10 μg/m3) versus moderate (10-25 μg/m3) concentrations of PM2.5. A regression analysis suggests a better prediction of PM2.5 when the climatic conditions are getting more extreme (strong winds or high levels of precipitation). The high correlation between estimated and real data for a time series analysis during the wet season confirms this finding. The study demonstrates that the use of statistical models based on machine learning is relevant to predict PM2.5 concentrations from meteorological data. |
id |
RCAP_d28d4b04ff797236071f87f3c7ce6f1d |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/147005 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Modeling PM2.5 Urban Pollution Using Machine Learning and Selected Meteorological ParametersNEURAL-NETWORKSAIR-POLLUTIONSURFACE WINDWRF MODELPREDICTIONSCALESignal ProcessingComputer Science(all)Electrical and Electronic EngineeringSDG 11 - Sustainable Cities and CommunitiesOutdoor air pollution costs millions of premature deaths annually, mostly due to anthropogenic fine particulate matter (or PM2.5). Quito, the capital city of Ecuador, is no exception in exceeding the healthy levels of pollution. In addition to the impact of urbanization, motorization, and rapid population growth, particulate pollution is modulated by meteorological factors and geophysical characteristics, which complicate the implementation of the most advanced models of weather forecast. Thus, this paper proposes a machine learning approach based on six years of meteorological and pollution data analyses to predict the concentrations of PM2.5 from wind (speed and direction) and precipitation levels. The results of the classification model show a high reliability in the classification of low (<10 μg/m3) versus high (>25 μg/m3) and low (<10 μg/m3) versus moderate (10-25 μg/m3) concentrations of PM2.5. A regression analysis suggests a better prediction of PM2.5 when the climatic conditions are getting more extreme (strong winds or high levels of precipitation). The high correlation between estimated and real data for a time series analysis during the wet season confirms this finding. The study demonstrates that the use of statistical models based on machine learning is relevant to predict PM2.5 concentrations from meteorological data.DEE2010-C2 Robótica e Manufactura Integrada por ComputadorDEE - Departamento de Engenharia Electrotécnica e de ComputadoresCTS - Centro de Tecnologia e SistemasRUNKleine Deters, JanZalakeviciute, RasaGonzalez, MarioRybarczyk, Yves2023-01-05T22:09:45Z20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/147005eng2090-0147PURE: 3820152https://doi.org/10.1155/2017/5106045info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T18:07:43Zoai:run.unl.pt:10362/147005Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T18:07:43Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Modeling PM2.5 Urban Pollution Using Machine Learning and Selected Meteorological Parameters |
title |
Modeling PM2.5 Urban Pollution Using Machine Learning and Selected Meteorological Parameters |
spellingShingle |
Modeling PM2.5 Urban Pollution Using Machine Learning and Selected Meteorological Parameters Kleine Deters, Jan NEURAL-NETWORKS AIR-POLLUTION SURFACE WIND WRF MODEL PREDICTION SCALE Signal Processing Computer Science(all) Electrical and Electronic Engineering SDG 11 - Sustainable Cities and Communities |
title_short |
Modeling PM2.5 Urban Pollution Using Machine Learning and Selected Meteorological Parameters |
title_full |
Modeling PM2.5 Urban Pollution Using Machine Learning and Selected Meteorological Parameters |
title_fullStr |
Modeling PM2.5 Urban Pollution Using Machine Learning and Selected Meteorological Parameters |
title_full_unstemmed |
Modeling PM2.5 Urban Pollution Using Machine Learning and Selected Meteorological Parameters |
title_sort |
Modeling PM2.5 Urban Pollution Using Machine Learning and Selected Meteorological Parameters |
author |
Kleine Deters, Jan |
author_facet |
Kleine Deters, Jan Zalakeviciute, Rasa Gonzalez, Mario Rybarczyk, Yves |
author_role |
author |
author2 |
Zalakeviciute, Rasa Gonzalez, Mario Rybarczyk, Yves |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
DEE2010-C2 Robótica e Manufactura Integrada por Computador DEE - Departamento de Engenharia Electrotécnica e de Computadores CTS - Centro de Tecnologia e Sistemas RUN |
dc.contributor.author.fl_str_mv |
Kleine Deters, Jan Zalakeviciute, Rasa Gonzalez, Mario Rybarczyk, Yves |
dc.subject.por.fl_str_mv |
NEURAL-NETWORKS AIR-POLLUTION SURFACE WIND WRF MODEL PREDICTION SCALE Signal Processing Computer Science(all) Electrical and Electronic Engineering SDG 11 - Sustainable Cities and Communities |
topic |
NEURAL-NETWORKS AIR-POLLUTION SURFACE WIND WRF MODEL PREDICTION SCALE Signal Processing Computer Science(all) Electrical and Electronic Engineering SDG 11 - Sustainable Cities and Communities |
description |
Outdoor air pollution costs millions of premature deaths annually, mostly due to anthropogenic fine particulate matter (or PM2.5). Quito, the capital city of Ecuador, is no exception in exceeding the healthy levels of pollution. In addition to the impact of urbanization, motorization, and rapid population growth, particulate pollution is modulated by meteorological factors and geophysical characteristics, which complicate the implementation of the most advanced models of weather forecast. Thus, this paper proposes a machine learning approach based on six years of meteorological and pollution data analyses to predict the concentrations of PM2.5 from wind (speed and direction) and precipitation levels. The results of the classification model show a high reliability in the classification of low (<10 μg/m3) versus high (>25 μg/m3) and low (<10 μg/m3) versus moderate (10-25 μg/m3) concentrations of PM2.5. A regression analysis suggests a better prediction of PM2.5 when the climatic conditions are getting more extreme (strong winds or high levels of precipitation). The high correlation between estimated and real data for a time series analysis during the wet season confirms this finding. The study demonstrates that the use of statistical models based on machine learning is relevant to predict PM2.5 concentrations from meteorological data. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2017-01-01T00:00:00Z 2023-01-05T22:09:45Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/147005 |
url |
http://hdl.handle.net/10362/147005 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2090-0147 PURE: 3820152 https://doi.org/10.1155/2017/5106045 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545905270685696 |