A Machine Learning Approach to Sentinel-3 Feature Extraction In The Context Of Harmful Algal Blooms
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/148374 |
Resumo: | Harmful Algal Blooms (HAB) are typically described as blooms of phytoplankton species that can not only cause harm to the environment but also humans. Some species that form these blooms can release biotoxins, which accumulate in shellfish [1]. When humans consume contaminated shellfish, it can cause adverse health problems [2]–[4]. Due to the associated risk of contamination, shellfisheries are forced to close, sometimes for months, leading to significant economic losses. Although microscopes enable toxic species identification, and bioassays enable biotoxin identification and quantification, these methods are impractical for continuous monitoring since they require recurrent in situ data sampling, followed by laboratory analysis. Chlorophyll a is a pigment common to almost all marine phytoplankton groups. It has a spectral signature that enables it to be detectable by remote satellites that capture water-leaving radiance [5]. Remote sensing can be very useful since it allows us to take synoptic measurements of large sea areas [6]. Several machine learning algorithms have been researched to detect or forecast algal biomass or HAB presence [7]–[10]. However, the application of remotely sensed images to detect and forecast biotoxin concentration seems relatively unexplored. Given this problem, two datasets with Sentinel-3 imagery patches were created, from along the west coastal region of Portugal, which differ in size and the preprocessing applied. We assessed the application of Machine Learning (ML) models to extract informative features from the datasets. The models were evaluated quantitatively and qualitatively. The qualitative analysis demonstrated how the features extracted by the models seem to be consistent with features extracted for downstream tasks in the literature, suggesting the features retain helpful information. However, at this time, further work Is required to determine whether the feature can be helpful in the task of biotoxin concentration forecasting. |
id |
RCAP_d32c183c9c7bc5d2c9ca2312567d55db |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/148374 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A Machine Learning Approach to Sentinel-3 Feature Extraction In The Context Of Harmful Algal Bloomsmachine learningfeature extractionSentinel-3remote sensingDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaHarmful Algal Blooms (HAB) are typically described as blooms of phytoplankton species that can not only cause harm to the environment but also humans. Some species that form these blooms can release biotoxins, which accumulate in shellfish [1]. When humans consume contaminated shellfish, it can cause adverse health problems [2]–[4]. Due to the associated risk of contamination, shellfisheries are forced to close, sometimes for months, leading to significant economic losses. Although microscopes enable toxic species identification, and bioassays enable biotoxin identification and quantification, these methods are impractical for continuous monitoring since they require recurrent in situ data sampling, followed by laboratory analysis. Chlorophyll a is a pigment common to almost all marine phytoplankton groups. It has a spectral signature that enables it to be detectable by remote satellites that capture water-leaving radiance [5]. Remote sensing can be very useful since it allows us to take synoptic measurements of large sea areas [6]. Several machine learning algorithms have been researched to detect or forecast algal biomass or HAB presence [7]–[10]. However, the application of remotely sensed images to detect and forecast biotoxin concentration seems relatively unexplored. Given this problem, two datasets with Sentinel-3 imagery patches were created, from along the west coastal region of Portugal, which differ in size and the preprocessing applied. We assessed the application of Machine Learning (ML) models to extract informative features from the datasets. The models were evaluated quantitatively and qualitatively. The qualitative analysis demonstrated how the features extracted by the models seem to be consistent with features extracted for downstream tasks in the literature, suggesting the features retain helpful information. However, at this time, further work Is required to determine whether the feature can be helpful in the task of biotoxin concentration forecasting.Um Harmful Algal Bloom (HAB) é tipicamente descrito como sendo a proliferação de espécies de fitoplâncton que podem causar danos não só ao ambiente, mas também aos humanos. Algumas espécies que formam HABs podem libertar biotoxinas, que se acumulam nos moluscos [1]. Quando o ser humano consome moluscos contaminados, pode causar problemas de saúde adversos [2]–[4]. Devido ao risco associado de contaminação, as áreas de exploração de bivalves são forçadas a fechar, por vezes durante meses, levando a perdas económicas significantes. A clorofila a é um pigmento comum a quase todos os grupos de fitoplâncton marinho e tem uma assinatura espectral que lhe permite ser detectável por satélites remotos que captam a radiância que sai da água do mar [5]. A detecção remota pode ser muito útil, uma vez que nos permite fazer medições sinópticas de grandes áreas marítimas [6]. Foram pesquisados vários modelos de aprendizagem automática para detectar ou prever a presença de biomassa algal ou HAB [7]–[10]. No entanto, a utilização de imagens de detecção remota para detectar e prever a concentração de biotoxinas parece relativamente inexplorada. Dado este problema, foram criados dois conjuntos de dados com patches de imagens do satélite Sentinel-3 ao longo da região costeira ocidental de Portugal, que diferem em tamanho e no pré-processamento aplicado. Avaliámos diferentes modelos de aprendizagem automática para extrair características informativas dos conjuntos de dados. Os modelos foram avaliados quantitativa e qualitativamente. A análise qualitativa demonstrou como a informação extraída pelos modelos parecem ser consistentes com a extraída na literatura para informar outros modelos, sugerindo que as características retêm informação útil. Contudo, neste momento, é necessário trabalho futuro para determinar se a informação pode ser útil na tarefa de previsão da concentração de biotoxinas.Krippahl, LudwigLopes, MartaRUNCosta, João2023-01-30T15:36:45Z2022-062022-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/148374enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:29:46Zoai:run.unl.pt:10362/148374Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:53:20.108492Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A Machine Learning Approach to Sentinel-3 Feature Extraction In The Context Of Harmful Algal Blooms |
title |
A Machine Learning Approach to Sentinel-3 Feature Extraction In The Context Of Harmful Algal Blooms |
spellingShingle |
A Machine Learning Approach to Sentinel-3 Feature Extraction In The Context Of Harmful Algal Blooms Costa, João machine learning feature extraction Sentinel-3 remote sensing Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
A Machine Learning Approach to Sentinel-3 Feature Extraction In The Context Of Harmful Algal Blooms |
title_full |
A Machine Learning Approach to Sentinel-3 Feature Extraction In The Context Of Harmful Algal Blooms |
title_fullStr |
A Machine Learning Approach to Sentinel-3 Feature Extraction In The Context Of Harmful Algal Blooms |
title_full_unstemmed |
A Machine Learning Approach to Sentinel-3 Feature Extraction In The Context Of Harmful Algal Blooms |
title_sort |
A Machine Learning Approach to Sentinel-3 Feature Extraction In The Context Of Harmful Algal Blooms |
author |
Costa, João |
author_facet |
Costa, João |
author_role |
author |
dc.contributor.none.fl_str_mv |
Krippahl, Ludwig Lopes, Marta RUN |
dc.contributor.author.fl_str_mv |
Costa, João |
dc.subject.por.fl_str_mv |
machine learning feature extraction Sentinel-3 remote sensing Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
machine learning feature extraction Sentinel-3 remote sensing Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
Harmful Algal Blooms (HAB) are typically described as blooms of phytoplankton species that can not only cause harm to the environment but also humans. Some species that form these blooms can release biotoxins, which accumulate in shellfish [1]. When humans consume contaminated shellfish, it can cause adverse health problems [2]–[4]. Due to the associated risk of contamination, shellfisheries are forced to close, sometimes for months, leading to significant economic losses. Although microscopes enable toxic species identification, and bioassays enable biotoxin identification and quantification, these methods are impractical for continuous monitoring since they require recurrent in situ data sampling, followed by laboratory analysis. Chlorophyll a is a pigment common to almost all marine phytoplankton groups. It has a spectral signature that enables it to be detectable by remote satellites that capture water-leaving radiance [5]. Remote sensing can be very useful since it allows us to take synoptic measurements of large sea areas [6]. Several machine learning algorithms have been researched to detect or forecast algal biomass or HAB presence [7]–[10]. However, the application of remotely sensed images to detect and forecast biotoxin concentration seems relatively unexplored. Given this problem, two datasets with Sentinel-3 imagery patches were created, from along the west coastal region of Portugal, which differ in size and the preprocessing applied. We assessed the application of Machine Learning (ML) models to extract informative features from the datasets. The models were evaluated quantitatively and qualitatively. The qualitative analysis demonstrated how the features extracted by the models seem to be consistent with features extracted for downstream tasks in the literature, suggesting the features retain helpful information. However, at this time, further work Is required to determine whether the feature can be helpful in the task of biotoxin concentration forecasting. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-06 2022-06-01T00:00:00Z 2023-01-30T15:36:45Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/148374 |
url |
http://hdl.handle.net/10362/148374 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138123877187584 |