A Machine Learning Approach to Sentinel-3 Feature Extraction In The Context Of Harmful Algal Blooms

Detalhes bibliográficos
Autor(a) principal: Costa, João
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/148374
Resumo: Harmful Algal Blooms (HAB) are typically described as blooms of phytoplankton species that can not only cause harm to the environment but also humans. Some species that form these blooms can release biotoxins, which accumulate in shellfish [1]. When humans consume contaminated shellfish, it can cause adverse health problems [2]–[4]. Due to the associated risk of contamination, shellfisheries are forced to close, sometimes for months, leading to significant economic losses. Although microscopes enable toxic species identification, and bioassays enable biotoxin identification and quantification, these methods are impractical for continuous monitoring since they require recurrent in situ data sampling, followed by laboratory analysis. Chlorophyll a is a pigment common to almost all marine phytoplankton groups. It has a spectral signature that enables it to be detectable by remote satellites that capture water-leaving radiance [5]. Remote sensing can be very useful since it allows us to take synoptic measurements of large sea areas [6]. Several machine learning algorithms have been researched to detect or forecast algal biomass or HAB presence [7]–[10]. However, the application of remotely sensed images to detect and forecast biotoxin concentration seems relatively unexplored. Given this problem, two datasets with Sentinel-3 imagery patches were created, from along the west coastal region of Portugal, which differ in size and the preprocessing applied. We assessed the application of Machine Learning (ML) models to extract informative features from the datasets. The models were evaluated quantitatively and qualitatively. The qualitative analysis demonstrated how the features extracted by the models seem to be consistent with features extracted for downstream tasks in the literature, suggesting the features retain helpful information. However, at this time, further work Is required to determine whether the feature can be helpful in the task of biotoxin concentration forecasting.
id RCAP_d32c183c9c7bc5d2c9ca2312567d55db
oai_identifier_str oai:run.unl.pt:10362/148374
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A Machine Learning Approach to Sentinel-3 Feature Extraction In The Context Of Harmful Algal Bloomsmachine learningfeature extractionSentinel-3remote sensingDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaHarmful Algal Blooms (HAB) are typically described as blooms of phytoplankton species that can not only cause harm to the environment but also humans. Some species that form these blooms can release biotoxins, which accumulate in shellfish [1]. When humans consume contaminated shellfish, it can cause adverse health problems [2]–[4]. Due to the associated risk of contamination, shellfisheries are forced to close, sometimes for months, leading to significant economic losses. Although microscopes enable toxic species identification, and bioassays enable biotoxin identification and quantification, these methods are impractical for continuous monitoring since they require recurrent in situ data sampling, followed by laboratory analysis. Chlorophyll a is a pigment common to almost all marine phytoplankton groups. It has a spectral signature that enables it to be detectable by remote satellites that capture water-leaving radiance [5]. Remote sensing can be very useful since it allows us to take synoptic measurements of large sea areas [6]. Several machine learning algorithms have been researched to detect or forecast algal biomass or HAB presence [7]–[10]. However, the application of remotely sensed images to detect and forecast biotoxin concentration seems relatively unexplored. Given this problem, two datasets with Sentinel-3 imagery patches were created, from along the west coastal region of Portugal, which differ in size and the preprocessing applied. We assessed the application of Machine Learning (ML) models to extract informative features from the datasets. The models were evaluated quantitatively and qualitatively. The qualitative analysis demonstrated how the features extracted by the models seem to be consistent with features extracted for downstream tasks in the literature, suggesting the features retain helpful information. However, at this time, further work Is required to determine whether the feature can be helpful in the task of biotoxin concentration forecasting.Um Harmful Algal Bloom (HAB) é tipicamente descrito como sendo a proliferação de espécies de fitoplâncton que podem causar danos não só ao ambiente, mas também aos humanos. Algumas espécies que formam HABs podem libertar biotoxinas, que se acumulam nos moluscos [1]. Quando o ser humano consome moluscos contaminados, pode causar problemas de saúde adversos [2]–[4]. Devido ao risco associado de contaminação, as áreas de exploração de bivalves são forçadas a fechar, por vezes durante meses, levando a perdas económicas significantes. A clorofila a é um pigmento comum a quase todos os grupos de fitoplâncton marinho e tem uma assinatura espectral que lhe permite ser detectável por satélites remotos que captam a radiância que sai da água do mar [5]. A detecção remota pode ser muito útil, uma vez que nos permite fazer medições sinópticas de grandes áreas marítimas [6]. Foram pesquisados vários modelos de aprendizagem automática para detectar ou prever a presença de biomassa algal ou HAB [7]–[10]. No entanto, a utilização de imagens de detecção remota para detectar e prever a concentração de biotoxinas parece relativamente inexplorada. Dado este problema, foram criados dois conjuntos de dados com patches de imagens do satélite Sentinel-3 ao longo da região costeira ocidental de Portugal, que diferem em tamanho e no pré-processamento aplicado. Avaliámos diferentes modelos de aprendizagem automática para extrair características informativas dos conjuntos de dados. Os modelos foram avaliados quantitativa e qualitativamente. A análise qualitativa demonstrou como a informação extraída pelos modelos parecem ser consistentes com a extraída na literatura para informar outros modelos, sugerindo que as características retêm informação útil. Contudo, neste momento, é necessário trabalho futuro para determinar se a informação pode ser útil na tarefa de previsão da concentração de biotoxinas.Krippahl, LudwigLopes, MartaRUNCosta, João2023-01-30T15:36:45Z2022-062022-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/148374enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:29:46Zoai:run.unl.pt:10362/148374Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:53:20.108492Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A Machine Learning Approach to Sentinel-3 Feature Extraction In The Context Of Harmful Algal Blooms
title A Machine Learning Approach to Sentinel-3 Feature Extraction In The Context Of Harmful Algal Blooms
spellingShingle A Machine Learning Approach to Sentinel-3 Feature Extraction In The Context Of Harmful Algal Blooms
Costa, João
machine learning
feature extraction
Sentinel-3
remote sensing
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short A Machine Learning Approach to Sentinel-3 Feature Extraction In The Context Of Harmful Algal Blooms
title_full A Machine Learning Approach to Sentinel-3 Feature Extraction In The Context Of Harmful Algal Blooms
title_fullStr A Machine Learning Approach to Sentinel-3 Feature Extraction In The Context Of Harmful Algal Blooms
title_full_unstemmed A Machine Learning Approach to Sentinel-3 Feature Extraction In The Context Of Harmful Algal Blooms
title_sort A Machine Learning Approach to Sentinel-3 Feature Extraction In The Context Of Harmful Algal Blooms
author Costa, João
author_facet Costa, João
author_role author
dc.contributor.none.fl_str_mv Krippahl, Ludwig
Lopes, Marta
RUN
dc.contributor.author.fl_str_mv Costa, João
dc.subject.por.fl_str_mv machine learning
feature extraction
Sentinel-3
remote sensing
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic machine learning
feature extraction
Sentinel-3
remote sensing
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description Harmful Algal Blooms (HAB) are typically described as blooms of phytoplankton species that can not only cause harm to the environment but also humans. Some species that form these blooms can release biotoxins, which accumulate in shellfish [1]. When humans consume contaminated shellfish, it can cause adverse health problems [2]–[4]. Due to the associated risk of contamination, shellfisheries are forced to close, sometimes for months, leading to significant economic losses. Although microscopes enable toxic species identification, and bioassays enable biotoxin identification and quantification, these methods are impractical for continuous monitoring since they require recurrent in situ data sampling, followed by laboratory analysis. Chlorophyll a is a pigment common to almost all marine phytoplankton groups. It has a spectral signature that enables it to be detectable by remote satellites that capture water-leaving radiance [5]. Remote sensing can be very useful since it allows us to take synoptic measurements of large sea areas [6]. Several machine learning algorithms have been researched to detect or forecast algal biomass or HAB presence [7]–[10]. However, the application of remotely sensed images to detect and forecast biotoxin concentration seems relatively unexplored. Given this problem, two datasets with Sentinel-3 imagery patches were created, from along the west coastal region of Portugal, which differ in size and the preprocessing applied. We assessed the application of Machine Learning (ML) models to extract informative features from the datasets. The models were evaluated quantitatively and qualitatively. The qualitative analysis demonstrated how the features extracted by the models seem to be consistent with features extracted for downstream tasks in the literature, suggesting the features retain helpful information. However, at this time, further work Is required to determine whether the feature can be helpful in the task of biotoxin concentration forecasting.
publishDate 2022
dc.date.none.fl_str_mv 2022-06
2022-06-01T00:00:00Z
2023-01-30T15:36:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/148374
url http://hdl.handle.net/10362/148374
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138123877187584