Adhesion of water stressed Helicobacter pylori to abiotic surfaces

Detalhes bibliográficos
Autor(a) principal: Azevedo, N. F.
Data de Publicação: 2006
Outros Autores: Pacheco, A. P., Keevil, C. W., Vieira, M. J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/5499
Resumo: Aim: The main aim of this work was to study and compare the adhesion of water exposed Helicobacter pylori to six different substrata and correlate any changes in morphology, physiology, ability to form aggregates and cultivability when in the planktonic or in the sessile phase. Methods and Results: The number of total cells adhered for different water exposure times and modifications in the cell shape were evaluated using epifluorescence and scanning electron microscopy, and physiology assessed using Syto9 and propidium iodide (PI) cellular uptake. All abiotic surfaces were rapidly colonized by H. pylori, and colonization appeared to reach a steady state after 96 h with levels ranging from 2·3 × 106 to 3·6 × 106 total cells cm2. Cell morphology was largely dependent on the support material, with spiral bacteria, associated with the infectious form of H. pylori, subsisting in a higher percentage on nonpolymeric substrata. Also, sessile bacteria were generally able to retain the spiral shape for longer when compared with planktonic bacteria, which became coccoid more quickly. The formation of large aggregates, which may act as a protection mechanism against the negative impact of the stressful external environmental conditions, was mostly observed on the surface of copper coupons. However, Syto9 and PI staining indicates that most of H. pylori attached to copper or SS304 have a compromised cell membrane after only 48 h. Cultivability methods were only able to detect the bacteria up to the 2 h exposure-time and at very low levels (up to 500 CFU cm2). Conclusions: The fact that the pathogen is able to adhere, retain the spiral morphology for longer and form large aggregates when attached to different plumbing materials appeared to point to pipe materials in general, and copper plumbing in particular, as a possible reservoir of virulent H. pylori in water distribution systems. However, the Syto9/PI staining results and cultivability methods indicate that the attached H. pylori cells quickly enter in a nonviable physiological state. Significance and Impact of the Study: This represents the first study of H. pylori behaviour in water-exposed abiotic surfaces. It suggests that co-aggregation with the autochthonous heterotrophic consortia present in water is necessary for a longer survival of the pathogen in biofilms associated to drinking water systems.
id RCAP_d3fe2bd6f9da959cd28f5074d3203ea7
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/5499
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Adhesion of water stressed Helicobacter pylori to abiotic surfacesAdhesionCopperHelicobacter pyloriMorphologySubstrataWaterScience & TechnologyAim: The main aim of this work was to study and compare the adhesion of water exposed Helicobacter pylori to six different substrata and correlate any changes in morphology, physiology, ability to form aggregates and cultivability when in the planktonic or in the sessile phase. Methods and Results: The number of total cells adhered for different water exposure times and modifications in the cell shape were evaluated using epifluorescence and scanning electron microscopy, and physiology assessed using Syto9 and propidium iodide (PI) cellular uptake. All abiotic surfaces were rapidly colonized by H. pylori, and colonization appeared to reach a steady state after 96 h with levels ranging from 2·3 × 106 to 3·6 × 106 total cells cm2. Cell morphology was largely dependent on the support material, with spiral bacteria, associated with the infectious form of H. pylori, subsisting in a higher percentage on nonpolymeric substrata. Also, sessile bacteria were generally able to retain the spiral shape for longer when compared with planktonic bacteria, which became coccoid more quickly. The formation of large aggregates, which may act as a protection mechanism against the negative impact of the stressful external environmental conditions, was mostly observed on the surface of copper coupons. However, Syto9 and PI staining indicates that most of H. pylori attached to copper or SS304 have a compromised cell membrane after only 48 h. Cultivability methods were only able to detect the bacteria up to the 2 h exposure-time and at very low levels (up to 500 CFU cm2). Conclusions: The fact that the pathogen is able to adhere, retain the spiral morphology for longer and form large aggregates when attached to different plumbing materials appeared to point to pipe materials in general, and copper plumbing in particular, as a possible reservoir of virulent H. pylori in water distribution systems. However, the Syto9/PI staining results and cultivability methods indicate that the attached H. pylori cells quickly enter in a nonviable physiological state. Significance and Impact of the Study: This represents the first study of H. pylori behaviour in water-exposed abiotic surfaces. It suggests that co-aggregation with the autochthonous heterotrophic consortia present in water is necessary for a longer survival of the pathogen in biofilms associated to drinking water systems.Fundação para a Ciência e a Tecnologia (FCT).European Commission.WileyUniversidade do MinhoAzevedo, N. F.Pacheco, A. P.Keevil, C. W.Vieira, M. J.2006-092006-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/5499eng"Journal of Applied Microbiology". ISSN 1364-5072. 101:3 (2006) 718-724.1364-507210.1111/j.1365-2672.2006.03029.x16907822http://www.blackwell-synergy.com/toc/jam/101/3info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:21:28Zoai:repositorium.sdum.uminho.pt:1822/5499Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:14:46.770121Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Adhesion of water stressed Helicobacter pylori to abiotic surfaces
title Adhesion of water stressed Helicobacter pylori to abiotic surfaces
spellingShingle Adhesion of water stressed Helicobacter pylori to abiotic surfaces
Azevedo, N. F.
Adhesion
Copper
Helicobacter pylori
Morphology
Substrata
Water
Science & Technology
title_short Adhesion of water stressed Helicobacter pylori to abiotic surfaces
title_full Adhesion of water stressed Helicobacter pylori to abiotic surfaces
title_fullStr Adhesion of water stressed Helicobacter pylori to abiotic surfaces
title_full_unstemmed Adhesion of water stressed Helicobacter pylori to abiotic surfaces
title_sort Adhesion of water stressed Helicobacter pylori to abiotic surfaces
author Azevedo, N. F.
author_facet Azevedo, N. F.
Pacheco, A. P.
Keevil, C. W.
Vieira, M. J.
author_role author
author2 Pacheco, A. P.
Keevil, C. W.
Vieira, M. J.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Azevedo, N. F.
Pacheco, A. P.
Keevil, C. W.
Vieira, M. J.
dc.subject.por.fl_str_mv Adhesion
Copper
Helicobacter pylori
Morphology
Substrata
Water
Science & Technology
topic Adhesion
Copper
Helicobacter pylori
Morphology
Substrata
Water
Science & Technology
description Aim: The main aim of this work was to study and compare the adhesion of water exposed Helicobacter pylori to six different substrata and correlate any changes in morphology, physiology, ability to form aggregates and cultivability when in the planktonic or in the sessile phase. Methods and Results: The number of total cells adhered for different water exposure times and modifications in the cell shape were evaluated using epifluorescence and scanning electron microscopy, and physiology assessed using Syto9 and propidium iodide (PI) cellular uptake. All abiotic surfaces were rapidly colonized by H. pylori, and colonization appeared to reach a steady state after 96 h with levels ranging from 2·3 × 106 to 3·6 × 106 total cells cm2. Cell morphology was largely dependent on the support material, with spiral bacteria, associated with the infectious form of H. pylori, subsisting in a higher percentage on nonpolymeric substrata. Also, sessile bacteria were generally able to retain the spiral shape for longer when compared with planktonic bacteria, which became coccoid more quickly. The formation of large aggregates, which may act as a protection mechanism against the negative impact of the stressful external environmental conditions, was mostly observed on the surface of copper coupons. However, Syto9 and PI staining indicates that most of H. pylori attached to copper or SS304 have a compromised cell membrane after only 48 h. Cultivability methods were only able to detect the bacteria up to the 2 h exposure-time and at very low levels (up to 500 CFU cm2). Conclusions: The fact that the pathogen is able to adhere, retain the spiral morphology for longer and form large aggregates when attached to different plumbing materials appeared to point to pipe materials in general, and copper plumbing in particular, as a possible reservoir of virulent H. pylori in water distribution systems. However, the Syto9/PI staining results and cultivability methods indicate that the attached H. pylori cells quickly enter in a nonviable physiological state. Significance and Impact of the Study: This represents the first study of H. pylori behaviour in water-exposed abiotic surfaces. It suggests that co-aggregation with the autochthonous heterotrophic consortia present in water is necessary for a longer survival of the pathogen in biofilms associated to drinking water systems.
publishDate 2006
dc.date.none.fl_str_mv 2006-09
2006-09-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/5499
url http://hdl.handle.net/1822/5499
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv "Journal of Applied Microbiology". ISSN 1364-5072. 101:3 (2006) 718-724.
1364-5072
10.1111/j.1365-2672.2006.03029.x
16907822
http://www.blackwell-synergy.com/toc/jam/101/3
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132591605940224