On Optimal Multi-Sensor Network Configuration for 3D Registration

Detalhes bibliográficos
Autor(a) principal: Aliakbarpour, Hadi
Data de Publicação: 2015
Outros Autores: Prasath, V., Dias, Jorge
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/109223
https://doi.org/10.3390/jsan4040293
Resumo: Multi-sensor networks provide complementary information for various tasks like object detection, movement analysis and tracking. One of the important ingredients for efficient multi-sensor network actualization is the optimal configuration of sensors. In this work, we consider the problem of optimal configuration of a network of coupled camera-inertial sensors for 3D data registration and reconstruction to determine human movement analysis. For this purpose, we utilize a genetic algorithm (GA) based optimization which involves geometric visibility constraints. Our approach obtains optimal configuration maximizing visibility in smart sensor networks, and we provide a systematic study using edge visibility criteria, a GA for optimal placement, and extension from 2D to 3D. Experimental results on both simulated data and real camera-inertial fused data indicate we obtain promising results. The method is scalable and can also be applied to other smart network of sensors. We provide an application in distributed coupled video-inertial sensor based 3D reconstruction for human movement analysis in real time.
id RCAP_d5854d621c69cf93d15a21c675d7abef
oai_identifier_str oai:estudogeral.uc.pt:10316/109223
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On Optimal Multi-Sensor Network Configuration for 3D Registrationoptimal configurationsensor networkgenetic algorithm3Dreconstructionregistrationhuman movementsMulti-sensor networks provide complementary information for various tasks like object detection, movement analysis and tracking. One of the important ingredients for efficient multi-sensor network actualization is the optimal configuration of sensors. In this work, we consider the problem of optimal configuration of a network of coupled camera-inertial sensors for 3D data registration and reconstruction to determine human movement analysis. For this purpose, we utilize a genetic algorithm (GA) based optimization which involves geometric visibility constraints. Our approach obtains optimal configuration maximizing visibility in smart sensor networks, and we provide a systematic study using edge visibility criteria, a GA for optimal placement, and extension from 2D to 3D. Experimental results on both simulated data and real camera-inertial fused data indicate we obtain promising results. The method is scalable and can also be applied to other smart network of sensors. We provide an application in distributed coupled video-inertial sensor based 3D reconstruction for human movement analysis in real time.MDPI2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/109223http://hdl.handle.net/10316/109223https://doi.org/10.3390/jsan4040293eng2224-2708Aliakbarpour, HadiPrasath, V.Dias, Jorgeinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-10-04T08:41:27Zoai:estudogeral.uc.pt:10316/109223Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:25:24.757867Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On Optimal Multi-Sensor Network Configuration for 3D Registration
title On Optimal Multi-Sensor Network Configuration for 3D Registration
spellingShingle On Optimal Multi-Sensor Network Configuration for 3D Registration
Aliakbarpour, Hadi
optimal configuration
sensor network
genetic algorithm
3D
reconstruction
registration
human movements
title_short On Optimal Multi-Sensor Network Configuration for 3D Registration
title_full On Optimal Multi-Sensor Network Configuration for 3D Registration
title_fullStr On Optimal Multi-Sensor Network Configuration for 3D Registration
title_full_unstemmed On Optimal Multi-Sensor Network Configuration for 3D Registration
title_sort On Optimal Multi-Sensor Network Configuration for 3D Registration
author Aliakbarpour, Hadi
author_facet Aliakbarpour, Hadi
Prasath, V.
Dias, Jorge
author_role author
author2 Prasath, V.
Dias, Jorge
author2_role author
author
dc.contributor.author.fl_str_mv Aliakbarpour, Hadi
Prasath, V.
Dias, Jorge
dc.subject.por.fl_str_mv optimal configuration
sensor network
genetic algorithm
3D
reconstruction
registration
human movements
topic optimal configuration
sensor network
genetic algorithm
3D
reconstruction
registration
human movements
description Multi-sensor networks provide complementary information for various tasks like object detection, movement analysis and tracking. One of the important ingredients for efficient multi-sensor network actualization is the optimal configuration of sensors. In this work, we consider the problem of optimal configuration of a network of coupled camera-inertial sensors for 3D data registration and reconstruction to determine human movement analysis. For this purpose, we utilize a genetic algorithm (GA) based optimization which involves geometric visibility constraints. Our approach obtains optimal configuration maximizing visibility in smart sensor networks, and we provide a systematic study using edge visibility criteria, a GA for optimal placement, and extension from 2D to 3D. Experimental results on both simulated data and real camera-inertial fused data indicate we obtain promising results. The method is scalable and can also be applied to other smart network of sensors. We provide an application in distributed coupled video-inertial sensor based 3D reconstruction for human movement analysis in real time.
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/109223
http://hdl.handle.net/10316/109223
https://doi.org/10.3390/jsan4040293
url http://hdl.handle.net/10316/109223
https://doi.org/10.3390/jsan4040293
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2224-2708
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1817551257363021824