Optimal transport applied to eye fundus image registration
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-16042019-083755/ |
Resumo: | Optimal transport has emerged as a promising and effective tool for supporting modern image processing, geometric processing, and even machine learning. Indeed, the optimal transport theory enables great flexibility in modeling problems, as different optimization resources can be successfully employed while preserving a context relevant property that can be interpreted as mass. In this research, we introduce a novel automatic technique for eye fundus image registration which is based on optimal transport theory, image processing filters, graph matching, and geometric transformations into a concise and unified framework. Given two ocular fundus images, we construct representative graphs which embed in their structures spatial and topological information from the eyes blood vessels. The graphs produced are then used as input by our optimal transport model in order to establish a correspondence between their sets of nodes. We also proposed a new measure that estimates the register quality and an extension of an outlier removal technique called DeSAC. Finally, the best geometric transformation is performed on the image to properly accomplish the registration task. Our method relies on a solid mathematical foundation, is easy-to-implement and performs well when dealing with outliers created during the matching stage, producing deterministic and accurate solutions. We demonstrate the accuracy and effectiveness of the proposed methodology through a comprehensive set of qualitative and quantitative comparisons against various representative state-of-the-art methods on different fundus image databases. |
id |
USP_fe3354dd64c5eedcf1553a0b101bd420 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-16042019-083755 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Optimal transport applied to eye fundus image registrationTransporte ótimo de massa aplicado ao registro de imagens de fundo do olhoCorrespondência de grafosGraph matchingImage processingImagens médicasMedical imagesOptimal transportProcessamento de imagemRegistrationRegistroTransporte ótimoOptimal transport has emerged as a promising and effective tool for supporting modern image processing, geometric processing, and even machine learning. Indeed, the optimal transport theory enables great flexibility in modeling problems, as different optimization resources can be successfully employed while preserving a context relevant property that can be interpreted as mass. In this research, we introduce a novel automatic technique for eye fundus image registration which is based on optimal transport theory, image processing filters, graph matching, and geometric transformations into a concise and unified framework. Given two ocular fundus images, we construct representative graphs which embed in their structures spatial and topological information from the eyes blood vessels. The graphs produced are then used as input by our optimal transport model in order to establish a correspondence between their sets of nodes. We also proposed a new measure that estimates the register quality and an extension of an outlier removal technique called DeSAC. Finally, the best geometric transformation is performed on the image to properly accomplish the registration task. Our method relies on a solid mathematical foundation, is easy-to-implement and performs well when dealing with outliers created during the matching stage, producing deterministic and accurate solutions. We demonstrate the accuracy and effectiveness of the proposed methodology through a comprehensive set of qualitative and quantitative comparisons against various representative state-of-the-art methods on different fundus image databases.O transporte ótimo se tornou uma ferramenta promissora e eficaz para apoiar o processamento de imagens moderno, processamento geométrico e até aprendizado de máquina. De fato, a teoria do transporte ótimo permite uma grande flexibilidade na modelagem de problemas, pois diferentes recursos de otimização podem ser empregados enquanto se preserva uma propriedade relevante ao contexto que pode ser interpretada como massa. Nesta pesquisa, nós introduzimos uma nova técnica automática para o registro da imagem do fundo do olho que é baseada na teoria óptima do transporte, filtros de processamento de imagem, correspondência de grafos e transformações geométricas em uma estrutura concisa e unificada . Dadas duas imagens de fundo ocular, construímos grafos representativos que incorporam em suas estruturas informações espaciais e topológicas dos vasos sanguíneos do olho. Os grafos produzidos são usados como entrada pelos nossos modelo de transporte ótimo, a fim de estabelecer uma correspondência entre seus conjuntos de nós. Propomos também uma nova medida que estima a qualidade do registro e uma extensão de uma tecnica de removeção de outliers chamada DeSAC. Finalmente, transformações geométricas são realizadas entre as imagens para realizar adequadamente a tarefa de registro. Nosso método baseia-se em uma sólida base matemática, é fácil de implementar e funciona bem lidando com outliers criados durante o estágio de correspondência, produzindo soluções determinísticas e precisas. Demonstramos a exatidão e eficácia da metodologia proposta por meio de uma abordagem abrangente de comparações qualitativas e quantitativas contra vários métodos representativos do estado da arte em diferentes bases de dados de imagens de fundo de olho.Biblioteca Digitais de Teses e Dissertações da USPPaiva Neto, AfonsoMotta, Danilo Andrade2018-11-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-16042019-083755/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2019-06-07T17:52:55Zoai:teses.usp.br:tde-16042019-083755Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-06-07T17:52:55Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Optimal transport applied to eye fundus image registration Transporte ótimo de massa aplicado ao registro de imagens de fundo do olho |
title |
Optimal transport applied to eye fundus image registration |
spellingShingle |
Optimal transport applied to eye fundus image registration Motta, Danilo Andrade Correspondência de grafos Graph matching Image processing Imagens médicas Medical images Optimal transport Processamento de imagem Registration Registro Transporte ótimo |
title_short |
Optimal transport applied to eye fundus image registration |
title_full |
Optimal transport applied to eye fundus image registration |
title_fullStr |
Optimal transport applied to eye fundus image registration |
title_full_unstemmed |
Optimal transport applied to eye fundus image registration |
title_sort |
Optimal transport applied to eye fundus image registration |
author |
Motta, Danilo Andrade |
author_facet |
Motta, Danilo Andrade |
author_role |
author |
dc.contributor.none.fl_str_mv |
Paiva Neto, Afonso |
dc.contributor.author.fl_str_mv |
Motta, Danilo Andrade |
dc.subject.por.fl_str_mv |
Correspondência de grafos Graph matching Image processing Imagens médicas Medical images Optimal transport Processamento de imagem Registration Registro Transporte ótimo |
topic |
Correspondência de grafos Graph matching Image processing Imagens médicas Medical images Optimal transport Processamento de imagem Registration Registro Transporte ótimo |
description |
Optimal transport has emerged as a promising and effective tool for supporting modern image processing, geometric processing, and even machine learning. Indeed, the optimal transport theory enables great flexibility in modeling problems, as different optimization resources can be successfully employed while preserving a context relevant property that can be interpreted as mass. In this research, we introduce a novel automatic technique for eye fundus image registration which is based on optimal transport theory, image processing filters, graph matching, and geometric transformations into a concise and unified framework. Given two ocular fundus images, we construct representative graphs which embed in their structures spatial and topological information from the eyes blood vessels. The graphs produced are then used as input by our optimal transport model in order to establish a correspondence between their sets of nodes. We also proposed a new measure that estimates the register quality and an extension of an outlier removal technique called DeSAC. Finally, the best geometric transformation is performed on the image to properly accomplish the registration task. Our method relies on a solid mathematical foundation, is easy-to-implement and performs well when dealing with outliers created during the matching stage, producing deterministic and accurate solutions. We demonstrate the accuracy and effectiveness of the proposed methodology through a comprehensive set of qualitative and quantitative comparisons against various representative state-of-the-art methods on different fundus image databases. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-16042019-083755/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-16042019-083755/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257067978489856 |