Changing the shape of hair with keratin peptides

Detalhes bibliográficos
Autor(a) principal: Cruz, Célia F.
Data de Publicação: 2017
Outros Autores: Sá, M., Antunes, Egipto, Osorio, H., Ribeiro, Artur, Cavaco-Paulo, Artur
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/47751
Resumo: Chemical straightening of curly human hair fibres involves the use of strong reducing agents at alkaline pH. Human hair is made of keratin, and the fixation of fibre shape involves the reduction and reformation of new disulphide bonds between keratin molecules. Here, we propose an alternative and green methodology using keratin peptide sequences (10-13 residues) derived from the human genome. In a previous study, we analysed 1235 cysteine-containing peptides encoded by all human genes of hair keratin and keratin-associated proteins. These peptide fragments have been designed by nature to interact with keratin. Here we tested eight peptides, which were select based on their affinity for human hair keratin solution as shown by Matrix-Assisted Laser-Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF/TOF) and by molecular dynamics simulation. The peptides were characterized in detail regarding their ability to act as hair straightening modulators and to improve the tensile strength and elasticity of hair. Of the eight tested peptides, PepE, PepG and KP showed the highest ability to interact with a keratin peptide model, and to improve hair mechanical properties and straightening efficiency. The proposed solutions presented here will replace harsh reducing agents at alkaline pH by peptide formulations acting at neutral pH to change hair shape through the re-conformation of disulphide bonds. Here, we provide experimental evidence which explains at a molecular level how keratin decapeptides can interact with large keratin molecules in human hair, opening an innovative green approach to changing the shape of hair fibre.
id RCAP_d62d526ec95df2b0b1f62e38d9c901d7
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/47751
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Changing the shape of hair with keratin peptidesScience & TechnologyChemical straightening of curly human hair fibres involves the use of strong reducing agents at alkaline pH. Human hair is made of keratin, and the fixation of fibre shape involves the reduction and reformation of new disulphide bonds between keratin molecules. Here, we propose an alternative and green methodology using keratin peptide sequences (10-13 residues) derived from the human genome. In a previous study, we analysed 1235 cysteine-containing peptides encoded by all human genes of hair keratin and keratin-associated proteins. These peptide fragments have been designed by nature to interact with keratin. Here we tested eight peptides, which were select based on their affinity for human hair keratin solution as shown by Matrix-Assisted Laser-Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF/TOF) and by molecular dynamics simulation. The peptides were characterized in detail regarding their ability to act as hair straightening modulators and to improve the tensile strength and elasticity of hair. Of the eight tested peptides, PepE, PepG and KP showed the highest ability to interact with a keratin peptide model, and to improve hair mechanical properties and straightening efficiency. The proposed solutions presented here will replace harsh reducing agents at alkaline pH by peptide formulations acting at neutral pH to change hair shape through the re-conformation of disulphide bonds. Here, we provide experimental evidence which explains at a molecular level how keratin decapeptides can interact with large keratin molecules in human hair, opening an innovative green approach to changing the shape of hair fibre.This work was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of the UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and under the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462). This study was also supported by BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 – Programa Operacional Regional do Norte. Célia F. Cruz and Artur Ribeiro thank FCT for SFRH/BD/100927/2014 and SFRH/BPD/98388/2013 grants, respectively.info:eu-repo/semantics/publishedVersionRoyal Society of ChemistryUniversidade do MinhoCruz, Célia F.Sá, M.Antunes, EgiptoOsorio, H.Ribeiro, ArturCavaco-Paulo, Artur20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/47751engCruz, Célia F.; Sá, M.; Antunes, Egipto; Osorio, H.; Ribeiro, Artur; Cavaco-Paulo, Artur, Changing the shape of hair with keratin peptides. RSC Advances, 7(81), 51581-51592, 20172046-20692046-206910.1039/c7ra10461hhttp://pubs.rsc.org/en/journals/journalissues/rainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:52:36Zoai:repositorium.sdum.uminho.pt:1822/47751Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:51:46.471174Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Changing the shape of hair with keratin peptides
title Changing the shape of hair with keratin peptides
spellingShingle Changing the shape of hair with keratin peptides
Cruz, Célia F.
Science & Technology
title_short Changing the shape of hair with keratin peptides
title_full Changing the shape of hair with keratin peptides
title_fullStr Changing the shape of hair with keratin peptides
title_full_unstemmed Changing the shape of hair with keratin peptides
title_sort Changing the shape of hair with keratin peptides
author Cruz, Célia F.
author_facet Cruz, Célia F.
Sá, M.
Antunes, Egipto
Osorio, H.
Ribeiro, Artur
Cavaco-Paulo, Artur
author_role author
author2 Sá, M.
Antunes, Egipto
Osorio, H.
Ribeiro, Artur
Cavaco-Paulo, Artur
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Cruz, Célia F.
Sá, M.
Antunes, Egipto
Osorio, H.
Ribeiro, Artur
Cavaco-Paulo, Artur
dc.subject.por.fl_str_mv Science & Technology
topic Science & Technology
description Chemical straightening of curly human hair fibres involves the use of strong reducing agents at alkaline pH. Human hair is made of keratin, and the fixation of fibre shape involves the reduction and reformation of new disulphide bonds between keratin molecules. Here, we propose an alternative and green methodology using keratin peptide sequences (10-13 residues) derived from the human genome. In a previous study, we analysed 1235 cysteine-containing peptides encoded by all human genes of hair keratin and keratin-associated proteins. These peptide fragments have been designed by nature to interact with keratin. Here we tested eight peptides, which were select based on their affinity for human hair keratin solution as shown by Matrix-Assisted Laser-Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF/TOF) and by molecular dynamics simulation. The peptides were characterized in detail regarding their ability to act as hair straightening modulators and to improve the tensile strength and elasticity of hair. Of the eight tested peptides, PepE, PepG and KP showed the highest ability to interact with a keratin peptide model, and to improve hair mechanical properties and straightening efficiency. The proposed solutions presented here will replace harsh reducing agents at alkaline pH by peptide formulations acting at neutral pH to change hair shape through the re-conformation of disulphide bonds. Here, we provide experimental evidence which explains at a molecular level how keratin decapeptides can interact with large keratin molecules in human hair, opening an innovative green approach to changing the shape of hair fibre.
publishDate 2017
dc.date.none.fl_str_mv 2017
2017-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/47751
url http://hdl.handle.net/1822/47751
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Cruz, Célia F.; Sá, M.; Antunes, Egipto; Osorio, H.; Ribeiro, Artur; Cavaco-Paulo, Artur, Changing the shape of hair with keratin peptides. RSC Advances, 7(81), 51581-51592, 2017
2046-2069
2046-2069
10.1039/c7ra10461h
http://pubs.rsc.org/en/journals/journalissues/ra
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133107703513088