Remainders in pointfree topology
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/90475 https://doi.org/10.1016/j.topol.2018.06.007 |
Resumo: | Remainders of subspaces are important e.g. in the realm of compactifications. Their extension to pointfree topology faces a difficulty: sublocale lattices are more complicated than their topological counterparts (complete atomic Boolean algebras). Nevertheless, the co-Heyting structure of sublocale lattices is enough to provide a counterpart to subspace remainders: the sublocale supplements. In this paper we give an account of their fundamental properties, emphasizing their similarities and differences with classical remainders, and provide several examples and applications to illustrate their scope. In particular, we study their behavior under image and preimage maps, as well as their preservation by pointfree continuous maps (i.e. localic maps). We then use them to characterize nearly realcompact and nearly pseudocompact frames. In addition, we introduce and study hyper-real localic maps. |
id |
RCAP_d63fd97e94f81864dbab925511f27cd0 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/90475 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Remainders in pointfree topologyFrame; Locale; Sublocale; Heyting algebra; Coframe; Pseudodifference; Remainder; Remainder preservation; Proper map; Stone–Čech compactification; Regular Lindelöf reflection; Realcompact reflection; Nearly realcompact; Nearly pseudocompact; Hyper-real mapRemainders of subspaces are important e.g. in the realm of compactifications. Their extension to pointfree topology faces a difficulty: sublocale lattices are more complicated than their topological counterparts (complete atomic Boolean algebras). Nevertheless, the co-Heyting structure of sublocale lattices is enough to provide a counterpart to subspace remainders: the sublocale supplements. In this paper we give an account of their fundamental properties, emphasizing their similarities and differences with classical remainders, and provide several examples and applications to illustrate their scope. In particular, we study their behavior under image and preimage maps, as well as their preservation by pointfree continuous maps (i.e. localic maps). We then use them to characterize nearly realcompact and nearly pseudocompact frames. In addition, we introduce and study hyper-real localic maps.Elsevier2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/90475http://hdl.handle.net/10316/90475https://doi.org/10.1016/j.topol.2018.06.007enghttps://www.sciencedirect.com/science/article/abs/pii/S0166864118300786Ferreira, Maria JoãoPicado, JorgeMarques Pinto, Sandrainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-05-25T04:58:20Zoai:estudogeral.uc.pt:10316/90475Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:10:36.248955Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Remainders in pointfree topology |
title |
Remainders in pointfree topology |
spellingShingle |
Remainders in pointfree topology Ferreira, Maria João Frame; Locale; Sublocale; Heyting algebra; Coframe; Pseudodifference; Remainder; Remainder preservation; Proper map; Stone–Čech compactification; Regular Lindelöf reflection; Realcompact reflection; Nearly realcompact; Nearly pseudocompact; Hyper-real map |
title_short |
Remainders in pointfree topology |
title_full |
Remainders in pointfree topology |
title_fullStr |
Remainders in pointfree topology |
title_full_unstemmed |
Remainders in pointfree topology |
title_sort |
Remainders in pointfree topology |
author |
Ferreira, Maria João |
author_facet |
Ferreira, Maria João Picado, Jorge Marques Pinto, Sandra |
author_role |
author |
author2 |
Picado, Jorge Marques Pinto, Sandra |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Ferreira, Maria João Picado, Jorge Marques Pinto, Sandra |
dc.subject.por.fl_str_mv |
Frame; Locale; Sublocale; Heyting algebra; Coframe; Pseudodifference; Remainder; Remainder preservation; Proper map; Stone–Čech compactification; Regular Lindelöf reflection; Realcompact reflection; Nearly realcompact; Nearly pseudocompact; Hyper-real map |
topic |
Frame; Locale; Sublocale; Heyting algebra; Coframe; Pseudodifference; Remainder; Remainder preservation; Proper map; Stone–Čech compactification; Regular Lindelöf reflection; Realcompact reflection; Nearly realcompact; Nearly pseudocompact; Hyper-real map |
description |
Remainders of subspaces are important e.g. in the realm of compactifications. Their extension to pointfree topology faces a difficulty: sublocale lattices are more complicated than their topological counterparts (complete atomic Boolean algebras). Nevertheless, the co-Heyting structure of sublocale lattices is enough to provide a counterpart to subspace remainders: the sublocale supplements. In this paper we give an account of their fundamental properties, emphasizing their similarities and differences with classical remainders, and provide several examples and applications to illustrate their scope. In particular, we study their behavior under image and preimage maps, as well as their preservation by pointfree continuous maps (i.e. localic maps). We then use them to characterize nearly realcompact and nearly pseudocompact frames. In addition, we introduce and study hyper-real localic maps. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/90475 http://hdl.handle.net/10316/90475 https://doi.org/10.1016/j.topol.2018.06.007 |
url |
http://hdl.handle.net/10316/90475 https://doi.org/10.1016/j.topol.2018.06.007 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://www.sciencedirect.com/science/article/abs/pii/S0166864118300786 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134000394010625 |