Remainders in pointfree topology

Detalhes bibliográficos
Autor(a) principal: Ferreira, Maria João
Data de Publicação: 2018
Outros Autores: Picado, Jorge, Marques Pinto, Sandra
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/90475
https://doi.org/10.1016/j.topol.2018.06.007
Resumo: Remainders of subspaces are important e.g. in the realm of compactifications. Their extension to pointfree topology faces a difficulty: sublocale lattices are more complicated than their topological counterparts (complete atomic Boolean algebras). Nevertheless, the co-Heyting structure of sublocale lattices is enough to provide a counterpart to subspace remainders: the sublocale supplements. In this paper we give an account of their fundamental properties, emphasizing their similarities and differences with classical remainders, and provide several examples and applications to illustrate their scope. In particular, we study their behavior under image and preimage maps, as well as their preservation by pointfree continuous maps (i.e. localic maps). We then use them to characterize nearly realcompact and nearly pseudocompact frames. In addition, we introduce and study hyper-real localic maps.
id RCAP_d63fd97e94f81864dbab925511f27cd0
oai_identifier_str oai:estudogeral.uc.pt:10316/90475
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Remainders in pointfree topologyFrame; Locale; Sublocale; Heyting algebra; Coframe; Pseudodifference; Remainder; Remainder preservation; Proper map; Stone–Čech compactification; Regular Lindelöf reflection; Realcompact reflection; Nearly realcompact; Nearly pseudocompact; Hyper-real mapRemainders of subspaces are important e.g. in the realm of compactifications. Their extension to pointfree topology faces a difficulty: sublocale lattices are more complicated than their topological counterparts (complete atomic Boolean algebras). Nevertheless, the co-Heyting structure of sublocale lattices is enough to provide a counterpart to subspace remainders: the sublocale supplements. In this paper we give an account of their fundamental properties, emphasizing their similarities and differences with classical remainders, and provide several examples and applications to illustrate their scope. In particular, we study their behavior under image and preimage maps, as well as their preservation by pointfree continuous maps (i.e. localic maps). We then use them to characterize nearly realcompact and nearly pseudocompact frames. In addition, we introduce and study hyper-real localic maps.Elsevier2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/90475http://hdl.handle.net/10316/90475https://doi.org/10.1016/j.topol.2018.06.007enghttps://www.sciencedirect.com/science/article/abs/pii/S0166864118300786Ferreira, Maria JoãoPicado, JorgeMarques Pinto, Sandrainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-05-25T04:58:20Zoai:estudogeral.uc.pt:10316/90475Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:10:36.248955Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Remainders in pointfree topology
title Remainders in pointfree topology
spellingShingle Remainders in pointfree topology
Ferreira, Maria João
Frame; Locale; Sublocale; Heyting algebra; Coframe; Pseudodifference; Remainder; Remainder preservation; Proper map; Stone–Čech compactification; Regular Lindelöf reflection; Realcompact reflection; Nearly realcompact; Nearly pseudocompact; Hyper-real map
title_short Remainders in pointfree topology
title_full Remainders in pointfree topology
title_fullStr Remainders in pointfree topology
title_full_unstemmed Remainders in pointfree topology
title_sort Remainders in pointfree topology
author Ferreira, Maria João
author_facet Ferreira, Maria João
Picado, Jorge
Marques Pinto, Sandra
author_role author
author2 Picado, Jorge
Marques Pinto, Sandra
author2_role author
author
dc.contributor.author.fl_str_mv Ferreira, Maria João
Picado, Jorge
Marques Pinto, Sandra
dc.subject.por.fl_str_mv Frame; Locale; Sublocale; Heyting algebra; Coframe; Pseudodifference; Remainder; Remainder preservation; Proper map; Stone–Čech compactification; Regular Lindelöf reflection; Realcompact reflection; Nearly realcompact; Nearly pseudocompact; Hyper-real map
topic Frame; Locale; Sublocale; Heyting algebra; Coframe; Pseudodifference; Remainder; Remainder preservation; Proper map; Stone–Čech compactification; Regular Lindelöf reflection; Realcompact reflection; Nearly realcompact; Nearly pseudocompact; Hyper-real map
description Remainders of subspaces are important e.g. in the realm of compactifications. Their extension to pointfree topology faces a difficulty: sublocale lattices are more complicated than their topological counterparts (complete atomic Boolean algebras). Nevertheless, the co-Heyting structure of sublocale lattices is enough to provide a counterpart to subspace remainders: the sublocale supplements. In this paper we give an account of their fundamental properties, emphasizing their similarities and differences with classical remainders, and provide several examples and applications to illustrate their scope. In particular, we study their behavior under image and preimage maps, as well as their preservation by pointfree continuous maps (i.e. localic maps). We then use them to characterize nearly realcompact and nearly pseudocompact frames. In addition, we introduce and study hyper-real localic maps.
publishDate 2018
dc.date.none.fl_str_mv 2018
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/90475
http://hdl.handle.net/10316/90475
https://doi.org/10.1016/j.topol.2018.06.007
url http://hdl.handle.net/10316/90475
https://doi.org/10.1016/j.topol.2018.06.007
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://www.sciencedirect.com/science/article/abs/pii/S0166864118300786
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134000394010625