Using compression for profiling rheumatoid arthritis disease progression through data mining techniques
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10451/56825 |
Resumo: | Tese de mestrado, Ciência de Dados, 2022, Universidade de Lisboa, Faculdade de Ciências |
id |
RCAP_d69676bccd166b1b1312400e540bd9ab |
---|---|
oai_identifier_str |
oai:repositorio.ul.pt:10451/56825 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Using compression for profiling rheumatoid arthritis disease progression through data mining techniquesKolmogorovComplearnZgliClusteringAITeses de mestrado - 2022Departamento de InformáticaTese de mestrado, Ciência de Dados, 2022, Universidade de Lisboa, Faculdade de CiênciasAnkylosing spondylitis (AS) is a chronic autoimmune inflammatory condition belonging to the spondyloarthropathy category of rheumatic diseases characterized by being highly debilitating diseases and having a high impact on patients physical and mental health as well as social and quality of life. Biological treatment for this pathology is difficult to pick and lacks clear selection criteria. Usually, treatment is chosen based on patient convenience. Our goal is to use an approach based on algorithmic information theory, without any domain-specific parameters to set, or any background knowledge required (clustering by compression), iterate over the current state of the art, so it can be better integrated into python pipelines as well as better suit our specific problem, and apply it to our data comprised of patients with AS so patterns between biological treatments and patient profiles can be established thereby helping clinicians make a better treatment choice for each patient. Unsupervised clustering models are generated using normalized compression distance matrices, which are then evaluated using v-measure, adjusted random score, and visually analyzed taking into account model contingency matrix and feature distribution per cluster. Possible patterns between biological treatment success and patient profiles were identified. Furthermore, we observed that the compression by column developed and implemented in this new tool for clustering by compression seemed to yield better results than the previous approach.Souto, André Nuno CarvalhoRepositório da Universidade de LisboaAzevedo, Diogo Henrique Rodrigues2023-03-27T10:40:07Z202220222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10451/56825enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T17:04:49Zoai:repositorio.ul.pt:10451/56825Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:07:22.813913Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Using compression for profiling rheumatoid arthritis disease progression through data mining techniques |
title |
Using compression for profiling rheumatoid arthritis disease progression through data mining techniques |
spellingShingle |
Using compression for profiling rheumatoid arthritis disease progression through data mining techniques Azevedo, Diogo Henrique Rodrigues Kolmogorov Complearn Zgli Clustering AI Teses de mestrado - 2022 Departamento de Informática |
title_short |
Using compression for profiling rheumatoid arthritis disease progression through data mining techniques |
title_full |
Using compression for profiling rheumatoid arthritis disease progression through data mining techniques |
title_fullStr |
Using compression for profiling rheumatoid arthritis disease progression through data mining techniques |
title_full_unstemmed |
Using compression for profiling rheumatoid arthritis disease progression through data mining techniques |
title_sort |
Using compression for profiling rheumatoid arthritis disease progression through data mining techniques |
author |
Azevedo, Diogo Henrique Rodrigues |
author_facet |
Azevedo, Diogo Henrique Rodrigues |
author_role |
author |
dc.contributor.none.fl_str_mv |
Souto, André Nuno Carvalho Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Azevedo, Diogo Henrique Rodrigues |
dc.subject.por.fl_str_mv |
Kolmogorov Complearn Zgli Clustering AI Teses de mestrado - 2022 Departamento de Informática |
topic |
Kolmogorov Complearn Zgli Clustering AI Teses de mestrado - 2022 Departamento de Informática |
description |
Tese de mestrado, Ciência de Dados, 2022, Universidade de Lisboa, Faculdade de Ciências |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 2022 2022-01-01T00:00:00Z 2023-03-27T10:40:07Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10451/56825 |
url |
http://hdl.handle.net/10451/56825 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134627388981248 |