Adversarial Representation Learning for Medical Imaging
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10451/56666 |
Resumo: | Tese de mestrado, Engenharia Informática, 2022, Universidade de Lisboa, Faculdade de Ciências |
id |
RCAP_d999814602ea7e4bc185fed63c757827 |
---|---|
oai_identifier_str |
oai:repositorio.ul.pt:10451/56666 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Adversarial Representation Learning for Medical ImagingTeses de mestrado - 2022Departamento de InformáticaTese de mestrado, Engenharia Informática, 2022, Universidade de Lisboa, Faculdade de CiênciasBreast cancer is a significant cause of death worldwide, especially among women, being one of the hottest topics in the medical area. In 2020, according to the World Health Organization, there were 2 million women diagnosed with this disease and 685.000 deaths globally. Thus, demonstrating the enormous impact that this disease has and hence the theme of this work being focused on breast cancer. Nowadays, most medical cases use CAD (Computer-Aided Diagnosis) systems in various ways to prevent and help doctors attenuate the impact of cancer by combining their expertise and the advanced technology we have today to perform various tasks. These learning-based systems use many high-quality datasets to extract and identify core aspects and execute multiple tasks. However, there is significant difficulty accessing these datasets because of data protection rules or even different data sharing policies, allied to the nonexistence of suitable enough public datasets and labelled data. Regarding this problem and the growing use of CADs systems in the breast cancer topic, this work proposes generating mammograms based on a single mammogram allowing health entities to generate their mammograms and, thus, a highquality dataset. With that goal, this project uses the base work of ConSinGAN to generate images based on a single one and an innovative way of gaining more image variability by using single image composition harmonisation. The results underwent a validation process, where the images’ quality, diversity and impact were analysed. In terms of real-life usage, there is still a long way to go since such images need to be validated by real doctors and generated at much higher resolutions. However, for now, it is already a significant step toward this purpose.Garcia, Nuno Ricardo da CruzTomás, Helena Isabel Aidos LopesRepositório da Universidade de LisboaDomingues, José David Miranda Barreira2023-03-15T10:55:12Z202220222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10451/56666enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T17:04:31Zoai:repositorio.ul.pt:10451/56666Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:07:13.754441Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Adversarial Representation Learning for Medical Imaging |
title |
Adversarial Representation Learning for Medical Imaging |
spellingShingle |
Adversarial Representation Learning for Medical Imaging Domingues, José David Miranda Barreira Teses de mestrado - 2022 Departamento de Informática |
title_short |
Adversarial Representation Learning for Medical Imaging |
title_full |
Adversarial Representation Learning for Medical Imaging |
title_fullStr |
Adversarial Representation Learning for Medical Imaging |
title_full_unstemmed |
Adversarial Representation Learning for Medical Imaging |
title_sort |
Adversarial Representation Learning for Medical Imaging |
author |
Domingues, José David Miranda Barreira |
author_facet |
Domingues, José David Miranda Barreira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Garcia, Nuno Ricardo da Cruz Tomás, Helena Isabel Aidos Lopes Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Domingues, José David Miranda Barreira |
dc.subject.por.fl_str_mv |
Teses de mestrado - 2022 Departamento de Informática |
topic |
Teses de mestrado - 2022 Departamento de Informática |
description |
Tese de mestrado, Engenharia Informática, 2022, Universidade de Lisboa, Faculdade de Ciências |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 2022 2022-01-01T00:00:00Z 2023-03-15T10:55:12Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10451/56666 |
url |
http://hdl.handle.net/10451/56666 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134625516224512 |