Expansiveness and hyperbolicity in convex billiards
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.5/28886 |
Resumo: | We say that a convex planar billiard table B is C²-stably expansive on a fixed open subset U of the phase space if its billiard map fB is expansive on the maximal invariant set ΛB,U = .Ո n∈Z f n B(U), and this property holds under C²-perturbations of the billiard table. In this note we prove for such billiards that the closure of the set of periodic points of fB in ΛB,U is uniformly hyperbolic. In addition, we show that this property also holds for a generic choice among billiards which are expansive |
id |
RCAP_d90eb289aa62b16412e32d2f4218f7e2 |
---|---|
oai_identifier_str |
oai:www.repository.utl.pt:10400.5/28886 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Expansiveness and hyperbolicity in convex billiardsConvex Planar BilliardsHyperbolic SetsExpansivenessWe say that a convex planar billiard table B is C²-stably expansive on a fixed open subset U of the phase space if its billiard map fB is expansive on the maximal invariant set ΛB,U = .Ո n∈Z f n B(U), and this property holds under C²-perturbations of the billiard table. In this note we prove for such billiards that the closure of the set of periodic points of fB in ΛB,U is uniformly hyperbolic. In addition, we show that this property also holds for a generic choice among billiards which are expansiveSpringer NatureRepositório da Universidade de LisboaBessa, MárioDias, José LopesTorres, Maria Joana2023-10-04T09:52:24Z20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/28886engBessa, Mário; José Lopes Dias and Maria Joana Torres .(2021). “Expansiveness and hyperbolicity in convex billiards”. Regular and Chaotic Dynamics, Vol 26, No. 6: pp. 756-762. (Search PDF in 2023)DOI: 10.1134/S15603547210601251468 - 4845info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-10-22T01:31:58Zoai:www.repository.utl.pt:10400.5/28886Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:33:56.415915Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Expansiveness and hyperbolicity in convex billiards |
title |
Expansiveness and hyperbolicity in convex billiards |
spellingShingle |
Expansiveness and hyperbolicity in convex billiards Bessa, Mário Convex Planar Billiards Hyperbolic Sets Expansiveness |
title_short |
Expansiveness and hyperbolicity in convex billiards |
title_full |
Expansiveness and hyperbolicity in convex billiards |
title_fullStr |
Expansiveness and hyperbolicity in convex billiards |
title_full_unstemmed |
Expansiveness and hyperbolicity in convex billiards |
title_sort |
Expansiveness and hyperbolicity in convex billiards |
author |
Bessa, Mário |
author_facet |
Bessa, Mário Dias, José Lopes Torres, Maria Joana |
author_role |
author |
author2 |
Dias, José Lopes Torres, Maria Joana |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Bessa, Mário Dias, José Lopes Torres, Maria Joana |
dc.subject.por.fl_str_mv |
Convex Planar Billiards Hyperbolic Sets Expansiveness |
topic |
Convex Planar Billiards Hyperbolic Sets Expansiveness |
description |
We say that a convex planar billiard table B is C²-stably expansive on a fixed open subset U of the phase space if its billiard map fB is expansive on the maximal invariant set ΛB,U = .Ո n∈Z f n B(U), and this property holds under C²-perturbations of the billiard table. In this note we prove for such billiards that the closure of the set of periodic points of fB in ΛB,U is uniformly hyperbolic. In addition, we show that this property also holds for a generic choice among billiards which are expansive |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2021-01-01T00:00:00Z 2023-10-04T09:52:24Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.5/28886 |
url |
http://hdl.handle.net/10400.5/28886 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Bessa, Mário; José Lopes Dias and Maria Joana Torres .(2021). “Expansiveness and hyperbolicity in convex billiards”. Regular and Chaotic Dynamics, Vol 26, No. 6: pp. 756-762. (Search PDF in 2023) DOI: 10.1134/S1560354721060125 1468 - 4845 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Nature |
publisher.none.fl_str_mv |
Springer Nature |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133604547133440 |