Identifying the Distinct Cognitive Phenotypes in Multiple Sclerosis

Detalhes bibliográficos
Autor(a) principal: De Meo, E
Data de Publicação: 2021
Outros Autores: Portaccio, E, Giorgio, A, Ruano, L, Goretti, B, Niccolai, C, Patti, F, Chisari, CG, Gallo, P, Grossi, P, Ghezzi, A, Roscio, M, Mattioli, F, Stampatori, C, Simone, M, Viterbo, RG, Bonacchi, R, Rocca, MA, De Stefano, N, Filippi, M, Amato, MP
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/149573
Resumo: Importance: Cognitive impairment is a common and disabling feature of multiple sclerosis (MS), but a precise characterization of cognitive phenotypes in patients with MS is lacking. Objectives: To identify cognitive phenotypes in a clinical cohort of patients with MS and to characterize their clinical and magnetic resonance imaging (MRI) features. Design, setting, and participants: This multicenter cross-sectional study consecutively screened clinically stable patients with MS and healthy control individuals at 8 MS centers in Italy from January 1, 2010, to October 31, 2019. Patients with MS and healthy control individuals who were not using psychoactive drugs and had no history of other neurological or medical disorders, learning disability, severe head trauma, and alcohol or drug abuse were enrolled. Main outcomes and measures: Participants underwent a neurological examination and a cognitive evaluation with the Rao Brief Repeatable Battery and Stroop Color and Word Test. A subgroup of participants also underwent a brain MRI examination. Latent profile analysis was used on cognitive test z scores to identify cognitive phenotypes. Linear regression and mixed-effects models were used to define clinical and MRI features of each phenotype. Results: A total of 1212 patients with MS (mean [SD] age, 41.1 [11.1] years; 784 women [64.7%]) and 196 healthy control individuals (mean [SD] age, 40.4 [8.6] years; 130 women [66.3%]) were analyzed in this study. Five cognitive phenotypes were identified: preserved cognition (n = 235 patients [19.4%]), mild-verbal memory/semantic fluency (n = 362 patients [29.9%]), mild-multidomain (n = 236 patients [19.5%]), severe-executive/attention (n = 167 patients [13.8%]), and severe-multidomain (n = 212 patients [17.5%]) involvement. Patients with preserved cognition and mild-verbal memory/semantic fluency were younger (mean [SD] age, 36.5 [9.8] years and 38.2 [11.1] years) and had shorter disease duration (mean [SD] 8.0 [7.3] years and 8.3 [7.6] years) compared with patients with mild-multidomain (mean [SD] age, 42.6 [11.2] years; mean [SD] disease duration, 12.8 [9.6] years; P < .001), severe-executive/attention (mean [SD] age, 42.9 [11.7] years; mean [SD] disease duration, 12.2 [9.5] years; P < .001), and severe-multidomain (mean [SD] age, 44.0 [11.0] years; mean [SD] disease duration, 13.3 [10.2] years; P < .001) phenotypes. Severe cognitive phenotypes prevailed in patients with progressive MS. At MRI evaluation, compared with those with preserved cognition, patients with mild-verbal memory/semantic fluency exhibited decreased mean (SE) hippocampal volume (5.42 [0.68] mL vs 5.13 [0.68] mL; P = .04), patients with the mild-multidomain phenotype had decreased mean (SE) cortical gray matter volume (687.69 [35.40] mL vs 662.59 [35.48] mL; P = .02), patients with severe-executive/attention had higher mean (SE) T2-hyperintense lesion volume (51.33 [31.15] mL vs 99.69 [34.07] mL; P = .04), and patients with the severe-multidomain phenotype had extensive brain damage, with decreased volume in all the brain structures explored, except for nucleus pallidus, amygdala and caudate nucleus. Conclusions and relevance: This study found that by defining homogeneous and clinically meaningful phenotypes, the limitations of the traditional dichotomous classification in MS can be overcome. These phenotypes can represent a more meaningful measure of the cognitive status of patients with MS and can help define clinical disability, support clinicians in treatment choices, and tailor cognitive rehabilitation strategies.
id RCAP_d914384d210b7767f6314a65e4c5314e
oai_identifier_str oai:repositorio-aberto.up.pt:10216/149573
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Identifying the Distinct Cognitive Phenotypes in Multiple SclerosisImportance: Cognitive impairment is a common and disabling feature of multiple sclerosis (MS), but a precise characterization of cognitive phenotypes in patients with MS is lacking. Objectives: To identify cognitive phenotypes in a clinical cohort of patients with MS and to characterize their clinical and magnetic resonance imaging (MRI) features. Design, setting, and participants: This multicenter cross-sectional study consecutively screened clinically stable patients with MS and healthy control individuals at 8 MS centers in Italy from January 1, 2010, to October 31, 2019. Patients with MS and healthy control individuals who were not using psychoactive drugs and had no history of other neurological or medical disorders, learning disability, severe head trauma, and alcohol or drug abuse were enrolled. Main outcomes and measures: Participants underwent a neurological examination and a cognitive evaluation with the Rao Brief Repeatable Battery and Stroop Color and Word Test. A subgroup of participants also underwent a brain MRI examination. Latent profile analysis was used on cognitive test z scores to identify cognitive phenotypes. Linear regression and mixed-effects models were used to define clinical and MRI features of each phenotype. Results: A total of 1212 patients with MS (mean [SD] age, 41.1 [11.1] years; 784 women [64.7%]) and 196 healthy control individuals (mean [SD] age, 40.4 [8.6] years; 130 women [66.3%]) were analyzed in this study. Five cognitive phenotypes were identified: preserved cognition (n = 235 patients [19.4%]), mild-verbal memory/semantic fluency (n = 362 patients [29.9%]), mild-multidomain (n = 236 patients [19.5%]), severe-executive/attention (n = 167 patients [13.8%]), and severe-multidomain (n = 212 patients [17.5%]) involvement. Patients with preserved cognition and mild-verbal memory/semantic fluency were younger (mean [SD] age, 36.5 [9.8] years and 38.2 [11.1] years) and had shorter disease duration (mean [SD] 8.0 [7.3] years and 8.3 [7.6] years) compared with patients with mild-multidomain (mean [SD] age, 42.6 [11.2] years; mean [SD] disease duration, 12.8 [9.6] years; P < .001), severe-executive/attention (mean [SD] age, 42.9 [11.7] years; mean [SD] disease duration, 12.2 [9.5] years; P < .001), and severe-multidomain (mean [SD] age, 44.0 [11.0] years; mean [SD] disease duration, 13.3 [10.2] years; P < .001) phenotypes. Severe cognitive phenotypes prevailed in patients with progressive MS. At MRI evaluation, compared with those with preserved cognition, patients with mild-verbal memory/semantic fluency exhibited decreased mean (SE) hippocampal volume (5.42 [0.68] mL vs 5.13 [0.68] mL; P = .04), patients with the mild-multidomain phenotype had decreased mean (SE) cortical gray matter volume (687.69 [35.40] mL vs 662.59 [35.48] mL; P = .02), patients with severe-executive/attention had higher mean (SE) T2-hyperintense lesion volume (51.33 [31.15] mL vs 99.69 [34.07] mL; P = .04), and patients with the severe-multidomain phenotype had extensive brain damage, with decreased volume in all the brain structures explored, except for nucleus pallidus, amygdala and caudate nucleus. Conclusions and relevance: This study found that by defining homogeneous and clinically meaningful phenotypes, the limitations of the traditional dichotomous classification in MS can be overcome. These phenotypes can represent a more meaningful measure of the cognitive status of patients with MS and can help define clinical disability, support clinicians in treatment choices, and tailor cognitive rehabilitation strategies.American Medical Association20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/149573eng2168-61492168-615710.1001/jamaneurol.2020.4920De Meo, EPortaccio, EGiorgio, ARuano, LGoretti, BNiccolai, CPatti, FChisari, CGGallo, PGrossi, PGhezzi, ARoscio, MMattioli, FStampatori, CSimone, MViterbo, RGBonacchi, RRocca, MADe Stefano, NFilippi, MAmato, MPinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T14:44:49Zoai:repositorio-aberto.up.pt:10216/149573Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:07:42.481110Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Identifying the Distinct Cognitive Phenotypes in Multiple Sclerosis
title Identifying the Distinct Cognitive Phenotypes in Multiple Sclerosis
spellingShingle Identifying the Distinct Cognitive Phenotypes in Multiple Sclerosis
De Meo, E
title_short Identifying the Distinct Cognitive Phenotypes in Multiple Sclerosis
title_full Identifying the Distinct Cognitive Phenotypes in Multiple Sclerosis
title_fullStr Identifying the Distinct Cognitive Phenotypes in Multiple Sclerosis
title_full_unstemmed Identifying the Distinct Cognitive Phenotypes in Multiple Sclerosis
title_sort Identifying the Distinct Cognitive Phenotypes in Multiple Sclerosis
author De Meo, E
author_facet De Meo, E
Portaccio, E
Giorgio, A
Ruano, L
Goretti, B
Niccolai, C
Patti, F
Chisari, CG
Gallo, P
Grossi, P
Ghezzi, A
Roscio, M
Mattioli, F
Stampatori, C
Simone, M
Viterbo, RG
Bonacchi, R
Rocca, MA
De Stefano, N
Filippi, M
Amato, MP
author_role author
author2 Portaccio, E
Giorgio, A
Ruano, L
Goretti, B
Niccolai, C
Patti, F
Chisari, CG
Gallo, P
Grossi, P
Ghezzi, A
Roscio, M
Mattioli, F
Stampatori, C
Simone, M
Viterbo, RG
Bonacchi, R
Rocca, MA
De Stefano, N
Filippi, M
Amato, MP
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv De Meo, E
Portaccio, E
Giorgio, A
Ruano, L
Goretti, B
Niccolai, C
Patti, F
Chisari, CG
Gallo, P
Grossi, P
Ghezzi, A
Roscio, M
Mattioli, F
Stampatori, C
Simone, M
Viterbo, RG
Bonacchi, R
Rocca, MA
De Stefano, N
Filippi, M
Amato, MP
description Importance: Cognitive impairment is a common and disabling feature of multiple sclerosis (MS), but a precise characterization of cognitive phenotypes in patients with MS is lacking. Objectives: To identify cognitive phenotypes in a clinical cohort of patients with MS and to characterize their clinical and magnetic resonance imaging (MRI) features. Design, setting, and participants: This multicenter cross-sectional study consecutively screened clinically stable patients with MS and healthy control individuals at 8 MS centers in Italy from January 1, 2010, to October 31, 2019. Patients with MS and healthy control individuals who were not using psychoactive drugs and had no history of other neurological or medical disorders, learning disability, severe head trauma, and alcohol or drug abuse were enrolled. Main outcomes and measures: Participants underwent a neurological examination and a cognitive evaluation with the Rao Brief Repeatable Battery and Stroop Color and Word Test. A subgroup of participants also underwent a brain MRI examination. Latent profile analysis was used on cognitive test z scores to identify cognitive phenotypes. Linear regression and mixed-effects models were used to define clinical and MRI features of each phenotype. Results: A total of 1212 patients with MS (mean [SD] age, 41.1 [11.1] years; 784 women [64.7%]) and 196 healthy control individuals (mean [SD] age, 40.4 [8.6] years; 130 women [66.3%]) were analyzed in this study. Five cognitive phenotypes were identified: preserved cognition (n = 235 patients [19.4%]), mild-verbal memory/semantic fluency (n = 362 patients [29.9%]), mild-multidomain (n = 236 patients [19.5%]), severe-executive/attention (n = 167 patients [13.8%]), and severe-multidomain (n = 212 patients [17.5%]) involvement. Patients with preserved cognition and mild-verbal memory/semantic fluency were younger (mean [SD] age, 36.5 [9.8] years and 38.2 [11.1] years) and had shorter disease duration (mean [SD] 8.0 [7.3] years and 8.3 [7.6] years) compared with patients with mild-multidomain (mean [SD] age, 42.6 [11.2] years; mean [SD] disease duration, 12.8 [9.6] years; P < .001), severe-executive/attention (mean [SD] age, 42.9 [11.7] years; mean [SD] disease duration, 12.2 [9.5] years; P < .001), and severe-multidomain (mean [SD] age, 44.0 [11.0] years; mean [SD] disease duration, 13.3 [10.2] years; P < .001) phenotypes. Severe cognitive phenotypes prevailed in patients with progressive MS. At MRI evaluation, compared with those with preserved cognition, patients with mild-verbal memory/semantic fluency exhibited decreased mean (SE) hippocampal volume (5.42 [0.68] mL vs 5.13 [0.68] mL; P = .04), patients with the mild-multidomain phenotype had decreased mean (SE) cortical gray matter volume (687.69 [35.40] mL vs 662.59 [35.48] mL; P = .02), patients with severe-executive/attention had higher mean (SE) T2-hyperintense lesion volume (51.33 [31.15] mL vs 99.69 [34.07] mL; P = .04), and patients with the severe-multidomain phenotype had extensive brain damage, with decreased volume in all the brain structures explored, except for nucleus pallidus, amygdala and caudate nucleus. Conclusions and relevance: This study found that by defining homogeneous and clinically meaningful phenotypes, the limitations of the traditional dichotomous classification in MS can be overcome. These phenotypes can represent a more meaningful measure of the cognitive status of patients with MS and can help define clinical disability, support clinicians in treatment choices, and tailor cognitive rehabilitation strategies.
publishDate 2021
dc.date.none.fl_str_mv 2021
2021-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/149573
url https://hdl.handle.net/10216/149573
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2168-6149
2168-6157
10.1001/jamaneurol.2020.4920
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Medical Association
publisher.none.fl_str_mv American Medical Association
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136002783051776