Distributed Linear Precoding and User Selection in Coordinated Multicell Systems

Detalhes bibliográficos
Autor(a) principal: Castañeda, Eduardo
Data de Publicação: 2015
Outros Autores: Silva, Adão, Robles, Ramiro Sámano, Gameiro, Atílio
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/6837
Resumo: In this manuscript we tackle the problem of semidistributed user selection with distributed linear precoding for sum rate maximization in multiuser multicell systems. A set of adjacent base stations (BS) form a cluster in order to perform coordinated transmission to cell-edge users, and coordination is carried out through a central processing unit (CU). However, the message exchange between BSs and the CU is limited to scheduling control signaling and no user data or channel state information (CSI) exchange is allowed. In the considered multicell coordinated approach, each BS has its own set of cell-edge users and transmits only to one intended user while interference to non-intended users at other BSs is suppressed by signal steering (precoding). We use two distributed linear precoding schemes, Distributed Zero Forcing (DZF) and Distributed Virtual Signalto-Interference-plus-Noise Ratio (DVSINR). Considering multiple users per cell and the backhaul limitations, the BSs rely on local CSI to solve the user selection problem. First we investigate how the signal-to-noise-ratio (SNR) regime and the number of antennas at the BSs impact the effective channel gain (the magnitude of the channels after precoding) and its relationship with multiuser diversity. Considering that user selection must be based on the type of implemented precoding, we develop metrics of compatibility (estimations of the effective channel gains) that can be computed from local CSI at each BS and reported to the CU for scheduling decisions. Based on such metrics, we design user selection algorithms that can find a set of users that potentially maximizes the sum rate. Numerical results show the effectiveness of the proposed metrics and algorithms for different configurations of users and antennas at the base stations.
id RCAP_d92775d8159fab7af705304d5c2693e9
oai_identifier_str oai:recipp.ipp.pt:10400.22/6837
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Distributed Linear Precoding and User Selection in Coordinated Multicell SystemsSemi-distributed user selectionCoordinated downlink transmissionDistributed linear precodingCellular networksInterference channelsIn this manuscript we tackle the problem of semidistributed user selection with distributed linear precoding for sum rate maximization in multiuser multicell systems. A set of adjacent base stations (BS) form a cluster in order to perform coordinated transmission to cell-edge users, and coordination is carried out through a central processing unit (CU). However, the message exchange between BSs and the CU is limited to scheduling control signaling and no user data or channel state information (CSI) exchange is allowed. In the considered multicell coordinated approach, each BS has its own set of cell-edge users and transmits only to one intended user while interference to non-intended users at other BSs is suppressed by signal steering (precoding). We use two distributed linear precoding schemes, Distributed Zero Forcing (DZF) and Distributed Virtual Signalto-Interference-plus-Noise Ratio (DVSINR). Considering multiple users per cell and the backhaul limitations, the BSs rely on local CSI to solve the user selection problem. First we investigate how the signal-to-noise-ratio (SNR) regime and the number of antennas at the BSs impact the effective channel gain (the magnitude of the channels after precoding) and its relationship with multiuser diversity. Considering that user selection must be based on the type of implemented precoding, we develop metrics of compatibility (estimations of the effective channel gains) that can be computed from local CSI at each BS and reported to the CU for scheduling decisions. Based on such metrics, we design user selection algorithms that can find a set of users that potentially maximizes the sum rate. Numerical results show the effectiveness of the proposed metrics and algorithms for different configurations of users and antennas at the base stations.IEEERepositório Científico do Instituto Politécnico do PortoCastañeda, EduardoSilva, AdãoRobles, Ramiro SámanoGameiro, Atílio2015-11-06T15:49:31Z20162016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/6837eng10.1109/TVT.2015.2455596metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:47:07Zoai:recipp.ipp.pt:10400.22/6837Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:27:16.046822Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Distributed Linear Precoding and User Selection in Coordinated Multicell Systems
title Distributed Linear Precoding and User Selection in Coordinated Multicell Systems
spellingShingle Distributed Linear Precoding and User Selection in Coordinated Multicell Systems
Castañeda, Eduardo
Semi-distributed user selection
Coordinated downlink transmission
Distributed linear precoding
Cellular networks
Interference channels
title_short Distributed Linear Precoding and User Selection in Coordinated Multicell Systems
title_full Distributed Linear Precoding and User Selection in Coordinated Multicell Systems
title_fullStr Distributed Linear Precoding and User Selection in Coordinated Multicell Systems
title_full_unstemmed Distributed Linear Precoding and User Selection in Coordinated Multicell Systems
title_sort Distributed Linear Precoding and User Selection in Coordinated Multicell Systems
author Castañeda, Eduardo
author_facet Castañeda, Eduardo
Silva, Adão
Robles, Ramiro Sámano
Gameiro, Atílio
author_role author
author2 Silva, Adão
Robles, Ramiro Sámano
Gameiro, Atílio
author2_role author
author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Castañeda, Eduardo
Silva, Adão
Robles, Ramiro Sámano
Gameiro, Atílio
dc.subject.por.fl_str_mv Semi-distributed user selection
Coordinated downlink transmission
Distributed linear precoding
Cellular networks
Interference channels
topic Semi-distributed user selection
Coordinated downlink transmission
Distributed linear precoding
Cellular networks
Interference channels
description In this manuscript we tackle the problem of semidistributed user selection with distributed linear precoding for sum rate maximization in multiuser multicell systems. A set of adjacent base stations (BS) form a cluster in order to perform coordinated transmission to cell-edge users, and coordination is carried out through a central processing unit (CU). However, the message exchange between BSs and the CU is limited to scheduling control signaling and no user data or channel state information (CSI) exchange is allowed. In the considered multicell coordinated approach, each BS has its own set of cell-edge users and transmits only to one intended user while interference to non-intended users at other BSs is suppressed by signal steering (precoding). We use two distributed linear precoding schemes, Distributed Zero Forcing (DZF) and Distributed Virtual Signalto-Interference-plus-Noise Ratio (DVSINR). Considering multiple users per cell and the backhaul limitations, the BSs rely on local CSI to solve the user selection problem. First we investigate how the signal-to-noise-ratio (SNR) regime and the number of antennas at the BSs impact the effective channel gain (the magnitude of the channels after precoding) and its relationship with multiuser diversity. Considering that user selection must be based on the type of implemented precoding, we develop metrics of compatibility (estimations of the effective channel gains) that can be computed from local CSI at each BS and reported to the CU for scheduling decisions. Based on such metrics, we design user selection algorithms that can find a set of users that potentially maximizes the sum rate. Numerical results show the effectiveness of the proposed metrics and algorithms for different configurations of users and antennas at the base stations.
publishDate 2015
dc.date.none.fl_str_mv 2015-11-06T15:49:31Z
2016
2016-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/6837
url http://hdl.handle.net/10400.22/6837
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1109/TVT.2015.2455596
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131368280555520