Combining sparse and dense methods in 6D Visual Odometry
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/7290 |
Resumo: | 13th International Conference on Autonomous Robot Systems (Robotica), 2013, Lisboa |
id |
RCAP_d97dde0a4b52d6b011e7b421b48845e6 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/7290 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Combining sparse and dense methods in 6D Visual Odometry5-point RANSAC algorithm6D visual odometry probabilistic approachProcrustes methodAbsolute orientation methodDense methodDense optical flow methods13th International Conference on Autonomous Robot Systems (Robotica), 2013, LisboaVisual Odometry is one of the most powerful, yet challenging, means of estimating robot ego-motion. By grounding perception to the static features in the environment, vision is able, in principle, to prevent the estimation bias rather common in other sensory modalities such as inertial measurement units or wheel odometers. We present a novel approach to ego-motion estimation of a mobile robot by using a 6D Visual Odometry Probabilistic Approach. Our approach exploits the complementarity of dense optical flow methods and sparse feature based methods to achieve 6D estimation of vehicle motion. A dense probabilistic method is used to robustly estimate the epipolar geometry between two consecutive stereo pairs; a sparse feature stereo approach to estimate feature depth; and an Absolute Orientation method like the Procrustes to estimate the global scale factor. We tested our proposed method on a known dataset and compared our 6D Visual Odometry Probabilistic Approach without filtering techniques against a implementation that uses the well known 5-point RANSAC algorithm. Moreover, comparison with an Inertial Measurement Unit (RTK-GPS) is also performed, for providing a more detailed evaluation of the method against ground-truth information.IEEERepositório Científico do Instituto Politécnico do PortoSilva, Hugo MiguelSilva, EduardoBernardino, Alexandre2015-12-29T11:11:06Z20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/7290eng978-1-4799-1246-910.1109/Robotica.2013.6623527metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:47:29Zoai:recipp.ipp.pt:10400.22/7290Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:27:37.127107Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Combining sparse and dense methods in 6D Visual Odometry |
title |
Combining sparse and dense methods in 6D Visual Odometry |
spellingShingle |
Combining sparse and dense methods in 6D Visual Odometry Silva, Hugo Miguel 5-point RANSAC algorithm 6D visual odometry probabilistic approach Procrustes method Absolute orientation method Dense method Dense optical flow methods |
title_short |
Combining sparse and dense methods in 6D Visual Odometry |
title_full |
Combining sparse and dense methods in 6D Visual Odometry |
title_fullStr |
Combining sparse and dense methods in 6D Visual Odometry |
title_full_unstemmed |
Combining sparse and dense methods in 6D Visual Odometry |
title_sort |
Combining sparse and dense methods in 6D Visual Odometry |
author |
Silva, Hugo Miguel |
author_facet |
Silva, Hugo Miguel Silva, Eduardo Bernardino, Alexandre |
author_role |
author |
author2 |
Silva, Eduardo Bernardino, Alexandre |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Silva, Hugo Miguel Silva, Eduardo Bernardino, Alexandre |
dc.subject.por.fl_str_mv |
5-point RANSAC algorithm 6D visual odometry probabilistic approach Procrustes method Absolute orientation method Dense method Dense optical flow methods |
topic |
5-point RANSAC algorithm 6D visual odometry probabilistic approach Procrustes method Absolute orientation method Dense method Dense optical flow methods |
description |
13th International Conference on Autonomous Robot Systems (Robotica), 2013, Lisboa |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 2013-01-01T00:00:00Z 2015-12-29T11:11:06Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/7290 |
url |
http://hdl.handle.net/10400.22/7290 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
978-1-4799-1246-9 10.1109/Robotica.2013.6623527 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131371547918336 |