Content Matching and Sentiment Analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.19/8382 |
Resumo: | Developing new services or improving existing ones is becoming more accessible with the evolution of Natural Language Processing (NLP) techniques. Chatbots are a known example of an NLP-based service; they can interact with humans using text messages or natural language. NLP grants, however, the development of other types of services based on natural languages, such as machine translation, email spam detection, information extraction, content summarization, and question answering. A current need, to develop smart cities projects, is a system that can match content (text) from a project offer description with the candidates description by finding common patterns in different textual descriptions. This project presents an implementation of an automated tool with AI and NLP to match needs and concrete ideas for innovation with the skills and offers of the business sector, including start-ups and entrepreneurs. In sentiment analysis, NLP can be harnessed to recognize and categorize the emotional tone conveyed in textual content, such as project collaborator reviews, customer reviews, or social media posts. The sentiment analysis component in this project establishes a tool for comprehending and categorizing sentiments, for candidates seeking engagement in smart cities projects. |
id |
RCAP_da3898b35bc6ad1f57e9d4d49b0893b1 |
---|---|
oai_identifier_str |
oai:repositorio.ipv.pt:10400.19/8382 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Content Matching and Sentiment AnalysisNatural language processingnlpContent matchingSmart citiesStemming and lemmatizationBag-of-wordsBowTerm frequency-inverse document frequencyTFIDFTFIDFStop wordsCosine similarityFlaskSentiment analysisPolarityDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaDeveloping new services or improving existing ones is becoming more accessible with the evolution of Natural Language Processing (NLP) techniques. Chatbots are a known example of an NLP-based service; they can interact with humans using text messages or natural language. NLP grants, however, the development of other types of services based on natural languages, such as machine translation, email spam detection, information extraction, content summarization, and question answering. A current need, to develop smart cities projects, is a system that can match content (text) from a project offer description with the candidates description by finding common patterns in different textual descriptions. This project presents an implementation of an automated tool with AI and NLP to match needs and concrete ideas for innovation with the skills and offers of the business sector, including start-ups and entrepreneurs. In sentiment analysis, NLP can be harnessed to recognize and categorize the emotional tone conveyed in textual content, such as project collaborator reviews, customer reviews, or social media posts. The sentiment analysis component in this project establishes a tool for comprehending and categorizing sentiments, for candidates seeking engagement in smart cities projects.Pinto, Filipe Marques da Silva CabralRepositório Científico do Instituto Politécnico de ViseuRodrigues, Margarida Adriana Sampaio2024-05-09T14:45:15Z2024-03-012024-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.19/8382TID:203599675enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T02:30:35Zoai:repositorio.ipv.pt:10400.19/8382Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T02:30:35Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Content Matching and Sentiment Analysis |
title |
Content Matching and Sentiment Analysis |
spellingShingle |
Content Matching and Sentiment Analysis Rodrigues, Margarida Adriana Sampaio Natural language processing nlp Content matching Smart cities Stemming and lemmatization Bag-of-words Bow Term frequency-inverse document frequency TFIDF TF IDF Stop words Cosine similarity Flask Sentiment analysis Polarity Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
Content Matching and Sentiment Analysis |
title_full |
Content Matching and Sentiment Analysis |
title_fullStr |
Content Matching and Sentiment Analysis |
title_full_unstemmed |
Content Matching and Sentiment Analysis |
title_sort |
Content Matching and Sentiment Analysis |
author |
Rodrigues, Margarida Adriana Sampaio |
author_facet |
Rodrigues, Margarida Adriana Sampaio |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pinto, Filipe Marques da Silva Cabral Repositório Científico do Instituto Politécnico de Viseu |
dc.contributor.author.fl_str_mv |
Rodrigues, Margarida Adriana Sampaio |
dc.subject.por.fl_str_mv |
Natural language processing nlp Content matching Smart cities Stemming and lemmatization Bag-of-words Bow Term frequency-inverse document frequency TFIDF TF IDF Stop words Cosine similarity Flask Sentiment analysis Polarity Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
Natural language processing nlp Content matching Smart cities Stemming and lemmatization Bag-of-words Bow Term frequency-inverse document frequency TFIDF TF IDF Stop words Cosine similarity Flask Sentiment analysis Polarity Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
Developing new services or improving existing ones is becoming more accessible with the evolution of Natural Language Processing (NLP) techniques. Chatbots are a known example of an NLP-based service; they can interact with humans using text messages or natural language. NLP grants, however, the development of other types of services based on natural languages, such as machine translation, email spam detection, information extraction, content summarization, and question answering. A current need, to develop smart cities projects, is a system that can match content (text) from a project offer description with the candidates description by finding common patterns in different textual descriptions. This project presents an implementation of an automated tool with AI and NLP to match needs and concrete ideas for innovation with the skills and offers of the business sector, including start-ups and entrepreneurs. In sentiment analysis, NLP can be harnessed to recognize and categorize the emotional tone conveyed in textual content, such as project collaborator reviews, customer reviews, or social media posts. The sentiment analysis component in this project establishes a tool for comprehending and categorizing sentiments, for candidates seeking engagement in smart cities projects. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-05-09T14:45:15Z 2024-03-01 2024-03-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.19/8382 TID:203599675 |
url |
http://hdl.handle.net/10400.19/8382 |
identifier_str_mv |
TID:203599675 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817544858781351936 |