Thermoelastic Modelling of Additive Manufacturing by Selective Laser Melting

Detalhes bibliográficos
Autor(a) principal: Ribeiro, Mariana dos Santos
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/13033
Resumo: Additive manufacturing represents a powerful tool for the production of lightweight and optimised aerospace components capable of enabling an overall mass reduction of the system they are embedded in and, consequently, minimising fuel consumption and pollutant emissions. In particular, combining additive methods with titanium alloys is an attractive solution for saving weight while ensuring structural integrity due to their outstanding specific mechanical properties. The problems associated with the manufacturing of titanium by traditional processes, namely the waste of raw material in relation to the material actually utilised, can be solved by the adoption of additive methods, in particular Selective Laser Melting. Active Space Technologies has been investigating additive­titanium solutions in the scope of the ADVANSS project whose aim was the research, development and manufacturing of a support structure, the Large Lens Mounting. However, the considerable heat exchanges between the substrate, the powder bed, the melt pool and the surrounding environment involved in the process are responsible for inducing large stress concentrations that may cause part failure. The main objective of this work is the development of a thermoelastic model capable of replicating the phenomena occurring during Selective Laser Melting, including material melting and subsequent cooling, with good flexibility in parameter variation. By predicting thermal stresses induced during manufacturing, it is possible to establish a set of process parameters capable of mitigating part imperfections. A series of complementary goals have been proposed as well: carrying out parametric studies to predict stresses induced by a specific set of parameters for a single layer, and later of a whole component, with n layers; building a hierarchy of parameters according to their ability to minimise stresses; and enriching Active Space Technologies expertise in additive manufacturing technologies. The prospect is that the knowledge acquired with this project contributes to the development of a similar model that would optimise the fabrication process of the Large Lens Mounting.
id RCAP_da9e8b4f710cf60c8be31c3a5ddf390b
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/13033
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Thermoelastic Modelling of Additive Manufacturing by Selective Laser MeltingComsol MultiphysicsFabrico Aditivo de MetaisLivelink for MatlabParâmetros de ProcessamentoTensões ResiduaisTransformações de FaseDomínio/Área Científica::Engenharia e Tecnologia::Engenharia AeronáuticaAdditive manufacturing represents a powerful tool for the production of lightweight and optimised aerospace components capable of enabling an overall mass reduction of the system they are embedded in and, consequently, minimising fuel consumption and pollutant emissions. In particular, combining additive methods with titanium alloys is an attractive solution for saving weight while ensuring structural integrity due to their outstanding specific mechanical properties. The problems associated with the manufacturing of titanium by traditional processes, namely the waste of raw material in relation to the material actually utilised, can be solved by the adoption of additive methods, in particular Selective Laser Melting. Active Space Technologies has been investigating additive­titanium solutions in the scope of the ADVANSS project whose aim was the research, development and manufacturing of a support structure, the Large Lens Mounting. However, the considerable heat exchanges between the substrate, the powder bed, the melt pool and the surrounding environment involved in the process are responsible for inducing large stress concentrations that may cause part failure. The main objective of this work is the development of a thermoelastic model capable of replicating the phenomena occurring during Selective Laser Melting, including material melting and subsequent cooling, with good flexibility in parameter variation. By predicting thermal stresses induced during manufacturing, it is possible to establish a set of process parameters capable of mitigating part imperfections. A series of complementary goals have been proposed as well: carrying out parametric studies to predict stresses induced by a specific set of parameters for a single layer, and later of a whole component, with n layers; building a hierarchy of parameters according to their ability to minimise stresses; and enriching Active Space Technologies expertise in additive manufacturing technologies. The prospect is that the knowledge acquired with this project contributes to the development of a similar model that would optimise the fabrication process of the Large Lens Mounting.O fabrico aditivo representa uma ferramenta poderosa na produção de componentes aeroespaciais leves e otimizados capazes de reduzir a massa do sistema onde estão inseridos e, consequentemente, o consumo de combustível e das emissões de poluentes. Em particular, a combinação de métodos aditivos e ligas de titânio é uma solução atraente para minimizar o peso ao mesmo tempo que confere integridade estrutural ao produto graças às suas excelentes propriedades mecânicas específicas. Os problemas associados ao fabrico de titânio por processos tradicionais, nomeadamente o elevado desperdício de matéria­prima em relação ao material efetivamente aproveitado, podem ser resolvidos através da adoção de métodos aditivos, em particular da Fusão Seletiva a Laser. A Active Space Technologies começou a investigar soluções de titânio em conjunto com técnicas de fabrico aditivo no âmbito do projeto ADVANSS, cujo intuito era a investigação, desenvolvimento e fabrico de uma estrutura de suporte, o Large Lens Mounting. No entanto, as consideráveis trocas de calor entre o substrato, a cama de pó, a poça de material fundido e o ambiente circundante envolvidas no processo são responsáveis por induzir grandes concentrações de tensões que podem resultar em falhas na peça. O objetivo principal deste trabalho é o desenvolvimento de um modelo termoelástico capaz de replicar os fenómenos presentes durante a Fusão Seletiva a Laser, incluindo a fusão do material e o posterior arrefecimento, com boa flexibilidade na variação dos parâmetros. Ao prever as tensões térmicas induzidas durante o processo de fabrico é possível estabelecer um conjunto de parâmetros de processamento capazes de mitigar as imperfeições das peças. Um conjunto de objetivos complementares também foi proposto: a realização de estudos paramétricos para prever tensões induzidas por um conjunto específico de parâmetros para uma única camada e, posteriormente, para um componente inteiro, com n camadas; a construção de uma hierarquia de parâmetros de acordo com sua capacidade de minimizar tensões e o enriquecimento das competências da Active Space Technologies no que diz respeito a tecnologias de manufatura aditiva. A perspectiva é que o conhecimento adquirido com este projeto contribua para o desenvolvimento de um modelo semelhante para otimizar o processo de fabricação do Large Lens Mounting.Gamboa, Pedro VieiraSimões, Fernando António dos SantosuBibliorumRibeiro, Mariana dos Santos2023-02-20T09:26:53Z2022-01-182021-12-062022-01-18T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/13033TID:203225619enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:56:27Zoai:ubibliorum.ubi.pt:10400.6/13033Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:52:33.002694Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Thermoelastic Modelling of Additive Manufacturing by Selective Laser Melting
title Thermoelastic Modelling of Additive Manufacturing by Selective Laser Melting
spellingShingle Thermoelastic Modelling of Additive Manufacturing by Selective Laser Melting
Ribeiro, Mariana dos Santos
Comsol Multiphysics
Fabrico Aditivo de Metais
Livelink for Matlab
Parâmetros de Processamento
Tensões Residuais
Transformações de Fase
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica
title_short Thermoelastic Modelling of Additive Manufacturing by Selective Laser Melting
title_full Thermoelastic Modelling of Additive Manufacturing by Selective Laser Melting
title_fullStr Thermoelastic Modelling of Additive Manufacturing by Selective Laser Melting
title_full_unstemmed Thermoelastic Modelling of Additive Manufacturing by Selective Laser Melting
title_sort Thermoelastic Modelling of Additive Manufacturing by Selective Laser Melting
author Ribeiro, Mariana dos Santos
author_facet Ribeiro, Mariana dos Santos
author_role author
dc.contributor.none.fl_str_mv Gamboa, Pedro Vieira
Simões, Fernando António dos Santos
uBibliorum
dc.contributor.author.fl_str_mv Ribeiro, Mariana dos Santos
dc.subject.por.fl_str_mv Comsol Multiphysics
Fabrico Aditivo de Metais
Livelink for Matlab
Parâmetros de Processamento
Tensões Residuais
Transformações de Fase
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica
topic Comsol Multiphysics
Fabrico Aditivo de Metais
Livelink for Matlab
Parâmetros de Processamento
Tensões Residuais
Transformações de Fase
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica
description Additive manufacturing represents a powerful tool for the production of lightweight and optimised aerospace components capable of enabling an overall mass reduction of the system they are embedded in and, consequently, minimising fuel consumption and pollutant emissions. In particular, combining additive methods with titanium alloys is an attractive solution for saving weight while ensuring structural integrity due to their outstanding specific mechanical properties. The problems associated with the manufacturing of titanium by traditional processes, namely the waste of raw material in relation to the material actually utilised, can be solved by the adoption of additive methods, in particular Selective Laser Melting. Active Space Technologies has been investigating additive­titanium solutions in the scope of the ADVANSS project whose aim was the research, development and manufacturing of a support structure, the Large Lens Mounting. However, the considerable heat exchanges between the substrate, the powder bed, the melt pool and the surrounding environment involved in the process are responsible for inducing large stress concentrations that may cause part failure. The main objective of this work is the development of a thermoelastic model capable of replicating the phenomena occurring during Selective Laser Melting, including material melting and subsequent cooling, with good flexibility in parameter variation. By predicting thermal stresses induced during manufacturing, it is possible to establish a set of process parameters capable of mitigating part imperfections. A series of complementary goals have been proposed as well: carrying out parametric studies to predict stresses induced by a specific set of parameters for a single layer, and later of a whole component, with n layers; building a hierarchy of parameters according to their ability to minimise stresses; and enriching Active Space Technologies expertise in additive manufacturing technologies. The prospect is that the knowledge acquired with this project contributes to the development of a similar model that would optimise the fabrication process of the Large Lens Mounting.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-06
2022-01-18
2022-01-18T00:00:00Z
2023-02-20T09:26:53Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/13033
TID:203225619
url http://hdl.handle.net/10400.6/13033
identifier_str_mv TID:203225619
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136413584719872