Determinants of households´ consumption in Portugal - a machine learning approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/121884 |
Resumo: | Machine Learning has been widely adopted by researchers in several academic fields.Although at a slow pace, the field of economics has also started to acknowledge the pos-sibilities of these algorithm based methods for complementing or even replace traditionalEconometric approaches. This research aims to apply Machine Learning data-driven variable selection models for accessing the determinants of Portuguese households’ consumption using the Household Finance and Consumption Survey. I found that LASSO Regression and Elastic Net have the best performance in this setting and that wealth related variables have the highest impact on households’ consumption levels, followed by income, household’s characteristics and debt and consumption credit. |
id |
RCAP_daef28ceed0714baac8103284985e5ae |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/121884 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Determinants of households´ consumption in Portugal - a machine learning approachMachine learning algorithmsFeature selectionLasso regressionElasticDomínio/Área Científica::Ciências Sociais::Economia e GestãoMachine Learning has been widely adopted by researchers in several academic fields.Although at a slow pace, the field of economics has also started to acknowledge the pos-sibilities of these algorithm based methods for complementing or even replace traditionalEconometric approaches. This research aims to apply Machine Learning data-driven variable selection models for accessing the determinants of Portuguese households’ consumption using the Household Finance and Consumption Survey. I found that LASSO Regression and Elastic Net have the best performance in this setting and that wealth related variables have the highest impact on households’ consumption levels, followed by income, household’s characteristics and debt and consumption credit.Rodrigues, Paulo M. M.RUNNoro, Catarina Vieira2021-07-31T15:34:25Z2021-01-142021-01-042021-01-14T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/121884TID:202743110enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:03:57Zoai:run.unl.pt:10362/121884Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:44:44.137980Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Determinants of households´ consumption in Portugal - a machine learning approach |
title |
Determinants of households´ consumption in Portugal - a machine learning approach |
spellingShingle |
Determinants of households´ consumption in Portugal - a machine learning approach Noro, Catarina Vieira Machine learning algorithms Feature selection Lasso regression Elastic Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Determinants of households´ consumption in Portugal - a machine learning approach |
title_full |
Determinants of households´ consumption in Portugal - a machine learning approach |
title_fullStr |
Determinants of households´ consumption in Portugal - a machine learning approach |
title_full_unstemmed |
Determinants of households´ consumption in Portugal - a machine learning approach |
title_sort |
Determinants of households´ consumption in Portugal - a machine learning approach |
author |
Noro, Catarina Vieira |
author_facet |
Noro, Catarina Vieira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Rodrigues, Paulo M. M. RUN |
dc.contributor.author.fl_str_mv |
Noro, Catarina Vieira |
dc.subject.por.fl_str_mv |
Machine learning algorithms Feature selection Lasso regression Elastic Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Machine learning algorithms Feature selection Lasso regression Elastic Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
Machine Learning has been widely adopted by researchers in several academic fields.Although at a slow pace, the field of economics has also started to acknowledge the pos-sibilities of these algorithm based methods for complementing or even replace traditionalEconometric approaches. This research aims to apply Machine Learning data-driven variable selection models for accessing the determinants of Portuguese households’ consumption using the Household Finance and Consumption Survey. I found that LASSO Regression and Elastic Net have the best performance in this setting and that wealth related variables have the highest impact on households’ consumption levels, followed by income, household’s characteristics and debt and consumption credit. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07-31T15:34:25Z 2021-01-14 2021-01-04 2021-01-14T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/121884 TID:202743110 |
url |
http://hdl.handle.net/10362/121884 |
identifier_str_mv |
TID:202743110 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138054637617152 |