Determinants of households´ consumption in Portugal - a machine learning approach

Detalhes bibliográficos
Autor(a) principal: Noro, Catarina Vieira
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/121884
Resumo: Machine Learning has been widely adopted by researchers in several academic fields.Although at a slow pace, the field of economics has also started to acknowledge the pos-sibilities of these algorithm based methods for complementing or even replace traditionalEconometric approaches. This research aims to apply Machine Learning data-driven variable selection models for accessing the determinants of Portuguese households’ consumption using the Household Finance and Consumption Survey. I found that LASSO Regression and Elastic Net have the best performance in this setting and that wealth related variables have the highest impact on households’ consumption levels, followed by income, household’s characteristics and debt and consumption credit.
id RCAP_daef28ceed0714baac8103284985e5ae
oai_identifier_str oai:run.unl.pt:10362/121884
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Determinants of households´ consumption in Portugal - a machine learning approachMachine learning algorithmsFeature selectionLasso regressionElasticDomínio/Área Científica::Ciências Sociais::Economia e GestãoMachine Learning has been widely adopted by researchers in several academic fields.Although at a slow pace, the field of economics has also started to acknowledge the pos-sibilities of these algorithm based methods for complementing or even replace traditionalEconometric approaches. This research aims to apply Machine Learning data-driven variable selection models for accessing the determinants of Portuguese households’ consumption using the Household Finance and Consumption Survey. I found that LASSO Regression and Elastic Net have the best performance in this setting and that wealth related variables have the highest impact on households’ consumption levels, followed by income, household’s characteristics and debt and consumption credit.Rodrigues, Paulo M. M.RUNNoro, Catarina Vieira2021-07-31T15:34:25Z2021-01-142021-01-042021-01-14T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/121884TID:202743110enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:03:57Zoai:run.unl.pt:10362/121884Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:44:44.137980Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Determinants of households´ consumption in Portugal - a machine learning approach
title Determinants of households´ consumption in Portugal - a machine learning approach
spellingShingle Determinants of households´ consumption in Portugal - a machine learning approach
Noro, Catarina Vieira
Machine learning algorithms
Feature selection
Lasso regression
Elastic
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
title_short Determinants of households´ consumption in Portugal - a machine learning approach
title_full Determinants of households´ consumption in Portugal - a machine learning approach
title_fullStr Determinants of households´ consumption in Portugal - a machine learning approach
title_full_unstemmed Determinants of households´ consumption in Portugal - a machine learning approach
title_sort Determinants of households´ consumption in Portugal - a machine learning approach
author Noro, Catarina Vieira
author_facet Noro, Catarina Vieira
author_role author
dc.contributor.none.fl_str_mv Rodrigues, Paulo M. M.
RUN
dc.contributor.author.fl_str_mv Noro, Catarina Vieira
dc.subject.por.fl_str_mv Machine learning algorithms
Feature selection
Lasso regression
Elastic
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
topic Machine learning algorithms
Feature selection
Lasso regression
Elastic
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
description Machine Learning has been widely adopted by researchers in several academic fields.Although at a slow pace, the field of economics has also started to acknowledge the pos-sibilities of these algorithm based methods for complementing or even replace traditionalEconometric approaches. This research aims to apply Machine Learning data-driven variable selection models for accessing the determinants of Portuguese households’ consumption using the Household Finance and Consumption Survey. I found that LASSO Regression and Elastic Net have the best performance in this setting and that wealth related variables have the highest impact on households’ consumption levels, followed by income, household’s characteristics and debt and consumption credit.
publishDate 2021
dc.date.none.fl_str_mv 2021-07-31T15:34:25Z
2021-01-14
2021-01-04
2021-01-14T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/121884
TID:202743110
url http://hdl.handle.net/10362/121884
identifier_str_mv TID:202743110
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138054637617152