Data analytics process over road accidents data—A case study of Lisbon city
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/24674 |
Resumo: | Traffic accidents in urban areas lead to reduced quality of life and added pressure in the cities’ infra-structures. In the context of smart city data is becoming available that allows a deeper analysis of the phenomenon. We propose a data fusion process from different information sources like road accidents, weather conditions, local authority reports tools, traffic, fire brigade. These big data analytics allow the creation of knowledge for local municipalities using local data. Data visualizations allow big picture overview. This paper presents an approach to the geo-referenced accident-hotspots identification. Using ArcGIS Pro, we apply Kernel Density and Hot Spot Analysis (Getis-Ord Gi*) tools, identifying the existence of black spots in terms of location and context conditions, and evaluate the possible human, environmental and circumstantial factors that may influence the severity of accidents. The results were validated by an expert committee. This approach can be applied to other cites wherever this data is available. |
id |
RCAP_db385caffaa9e24c1d9cd5fe37b65185 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/24674 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Data analytics process over road accidents data—A case study of Lisbon cityRoad accidentsBlack spotsGISData analysisTraffic accidents in urban areas lead to reduced quality of life and added pressure in the cities’ infra-structures. In the context of smart city data is becoming available that allows a deeper analysis of the phenomenon. We propose a data fusion process from different information sources like road accidents, weather conditions, local authority reports tools, traffic, fire brigade. These big data analytics allow the creation of knowledge for local municipalities using local data. Data visualizations allow big picture overview. This paper presents an approach to the geo-referenced accident-hotspots identification. Using ArcGIS Pro, we apply Kernel Density and Hot Spot Analysis (Getis-Ord Gi*) tools, identifying the existence of black spots in terms of location and context conditions, and evaluate the possible human, environmental and circumstantial factors that may influence the severity of accidents. The results were validated by an expert committee. This approach can be applied to other cites wherever this data is available.MDPI2022-03-03T15:06:27Z2022-01-01T00:00:00Z20222022-03-03T15:05:38Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/24674eng2220-996410.3390/ijgi11020143Mesquitela, J.Elvas, L. B.Ferreira, J.Nunes, L.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:47:39Zoai:repositorio.iscte-iul.pt:10071/24674Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:23:08.904669Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Data analytics process over road accidents data—A case study of Lisbon city |
title |
Data analytics process over road accidents data—A case study of Lisbon city |
spellingShingle |
Data analytics process over road accidents data—A case study of Lisbon city Mesquitela, J. Road accidents Black spots GIS Data analysis |
title_short |
Data analytics process over road accidents data—A case study of Lisbon city |
title_full |
Data analytics process over road accidents data—A case study of Lisbon city |
title_fullStr |
Data analytics process over road accidents data—A case study of Lisbon city |
title_full_unstemmed |
Data analytics process over road accidents data—A case study of Lisbon city |
title_sort |
Data analytics process over road accidents data—A case study of Lisbon city |
author |
Mesquitela, J. |
author_facet |
Mesquitela, J. Elvas, L. B. Ferreira, J. Nunes, L. |
author_role |
author |
author2 |
Elvas, L. B. Ferreira, J. Nunes, L. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Mesquitela, J. Elvas, L. B. Ferreira, J. Nunes, L. |
dc.subject.por.fl_str_mv |
Road accidents Black spots GIS Data analysis |
topic |
Road accidents Black spots GIS Data analysis |
description |
Traffic accidents in urban areas lead to reduced quality of life and added pressure in the cities’ infra-structures. In the context of smart city data is becoming available that allows a deeper analysis of the phenomenon. We propose a data fusion process from different information sources like road accidents, weather conditions, local authority reports tools, traffic, fire brigade. These big data analytics allow the creation of knowledge for local municipalities using local data. Data visualizations allow big picture overview. This paper presents an approach to the geo-referenced accident-hotspots identification. Using ArcGIS Pro, we apply Kernel Density and Hot Spot Analysis (Getis-Ord Gi*) tools, identifying the existence of black spots in terms of location and context conditions, and evaluate the possible human, environmental and circumstantial factors that may influence the severity of accidents. The results were validated by an expert committee. This approach can be applied to other cites wherever this data is available. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03-03T15:06:27Z 2022-01-01T00:00:00Z 2022 2022-03-03T15:05:38Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/24674 |
url |
http://hdl.handle.net/10071/24674 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2220-9964 10.3390/ijgi11020143 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134792816525312 |