Multicomponent chemically and physically cross-linked hydrogels

Detalhes bibliográficos
Autor(a) principal: Padrão, Inês Rodrigues
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/87816
Resumo: Hydrogels are an emerging class of functional and tunable biomaterials. The hydrogel network can be maintained by chemical or physical interactions that are established between polymeric chains. The aim of this work is to develop polyethylene glycol (PEG)-based hydrogels using innovative methods based on chemical and physical interactions. A new chemical strategy for the production of hydrogels using a multicomponent reac-tion was shown for the first time. Here, 4-arm star-shaped PEG molecules, with suitable end functionalities, were used to form mechanically stiff chemically cross-linked hydrogels. The possibility of incorporating different molecular moieties into the network allowed the creation of functional and tunable hydrogels. The other approach of the work focused on physically cross-linked hydrogels. Here, the interaction between two affinity pairs was exploited to form physically crosslinked hydrogels. The first affinity pair studied was a peptide-inspired WW domain and its natural binding partner (PPxY peptide). Multivalency was created by conjugating both components of the affinity pair into 8-arm star-shaped PEG polymers. Once mixed, a new soft affinity-triggered assembly was formed, and the mechanical properties of these hydrogels were character-ized, and shown to be similar to hydrogels that contain the full version of the WW peptide in tandem. The second affinity pair studied was the Green Fluorescent Protein (GFP) and a de novo designed ligand. In this case, multivalency was generated by the tandem arrangement of GFP in 3 and 5 repeats. GFP in tandem was intercalated with a hydrophilic spacer and recombinantly expressed in two E. coli strains. The obtained crude extracts were further processed to purify the GFP protein using immobilized metal affinity chromatography, anion exchange and size-exclusion chromatography.
id RCAP_db92928a5cd36e8df7034669e79f60de
oai_identifier_str oai:run.unl.pt:10362/87816
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Multicomponent chemically and physically cross-linked hydrogelsHydrogelPEGUgi reactionWW domainGFPtandemDomínio/Área Científica::Engenharia e Tecnologia::Engenharia QuímicaHydrogels are an emerging class of functional and tunable biomaterials. The hydrogel network can be maintained by chemical or physical interactions that are established between polymeric chains. The aim of this work is to develop polyethylene glycol (PEG)-based hydrogels using innovative methods based on chemical and physical interactions. A new chemical strategy for the production of hydrogels using a multicomponent reac-tion was shown for the first time. Here, 4-arm star-shaped PEG molecules, with suitable end functionalities, were used to form mechanically stiff chemically cross-linked hydrogels. The possibility of incorporating different molecular moieties into the network allowed the creation of functional and tunable hydrogels. The other approach of the work focused on physically cross-linked hydrogels. Here, the interaction between two affinity pairs was exploited to form physically crosslinked hydrogels. The first affinity pair studied was a peptide-inspired WW domain and its natural binding partner (PPxY peptide). Multivalency was created by conjugating both components of the affinity pair into 8-arm star-shaped PEG polymers. Once mixed, a new soft affinity-triggered assembly was formed, and the mechanical properties of these hydrogels were character-ized, and shown to be similar to hydrogels that contain the full version of the WW peptide in tandem. The second affinity pair studied was the Green Fluorescent Protein (GFP) and a de novo designed ligand. In this case, multivalency was generated by the tandem arrangement of GFP in 3 and 5 repeats. GFP in tandem was intercalated with a hydrophilic spacer and recombinantly expressed in two E. coli strains. The obtained crude extracts were further processed to purify the GFP protein using immobilized metal affinity chromatography, anion exchange and size-exclusion chromatography.Roque, AnaPina, AnaRUNPadrão, Inês Rodrigues2022-10-01T00:30:38Z2019-11-0620192019-11-06T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/87816enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:39:04Zoai:run.unl.pt:10362/87816Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:36:46.281707Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Multicomponent chemically and physically cross-linked hydrogels
title Multicomponent chemically and physically cross-linked hydrogels
spellingShingle Multicomponent chemically and physically cross-linked hydrogels
Padrão, Inês Rodrigues
Hydrogel
PEG
Ugi reaction
WW domain
GFP
tandem
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Química
title_short Multicomponent chemically and physically cross-linked hydrogels
title_full Multicomponent chemically and physically cross-linked hydrogels
title_fullStr Multicomponent chemically and physically cross-linked hydrogels
title_full_unstemmed Multicomponent chemically and physically cross-linked hydrogels
title_sort Multicomponent chemically and physically cross-linked hydrogels
author Padrão, Inês Rodrigues
author_facet Padrão, Inês Rodrigues
author_role author
dc.contributor.none.fl_str_mv Roque, Ana
Pina, Ana
RUN
dc.contributor.author.fl_str_mv Padrão, Inês Rodrigues
dc.subject.por.fl_str_mv Hydrogel
PEG
Ugi reaction
WW domain
GFP
tandem
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Química
topic Hydrogel
PEG
Ugi reaction
WW domain
GFP
tandem
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Química
description Hydrogels are an emerging class of functional and tunable biomaterials. The hydrogel network can be maintained by chemical or physical interactions that are established between polymeric chains. The aim of this work is to develop polyethylene glycol (PEG)-based hydrogels using innovative methods based on chemical and physical interactions. A new chemical strategy for the production of hydrogels using a multicomponent reac-tion was shown for the first time. Here, 4-arm star-shaped PEG molecules, with suitable end functionalities, were used to form mechanically stiff chemically cross-linked hydrogels. The possibility of incorporating different molecular moieties into the network allowed the creation of functional and tunable hydrogels. The other approach of the work focused on physically cross-linked hydrogels. Here, the interaction between two affinity pairs was exploited to form physically crosslinked hydrogels. The first affinity pair studied was a peptide-inspired WW domain and its natural binding partner (PPxY peptide). Multivalency was created by conjugating both components of the affinity pair into 8-arm star-shaped PEG polymers. Once mixed, a new soft affinity-triggered assembly was formed, and the mechanical properties of these hydrogels were character-ized, and shown to be similar to hydrogels that contain the full version of the WW peptide in tandem. The second affinity pair studied was the Green Fluorescent Protein (GFP) and a de novo designed ligand. In this case, multivalency was generated by the tandem arrangement of GFP in 3 and 5 repeats. GFP in tandem was intercalated with a hydrophilic spacer and recombinantly expressed in two E. coli strains. The obtained crude extracts were further processed to purify the GFP protein using immobilized metal affinity chromatography, anion exchange and size-exclusion chromatography.
publishDate 2019
dc.date.none.fl_str_mv 2019-11-06
2019
2019-11-06T00:00:00Z
2022-10-01T00:30:38Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/87816
url http://hdl.handle.net/10362/87816
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137985209303040