Linear and nonlinear heart-rate analysis in a rat model of acute anoxia
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/67140 |
Resumo: | The objective of this study was the assessment of heart-rate (HR) dynamics with linear and nonlinear methods during episodes of mechanical ventilation and acute anoxia in rats. Namely, to assess whether linear and nonlinear HR analysis was able to discriminate acute anoxia from baseline in rats and if this was consistent with human foetal and adult studies. Five HR segments of 1 min duration, during baseline recording, mechanical ventilation and first, second and third minutes of induced acute anoxia, were analysed in ten adult Wistar rats. Linear time and frequency domain and nonlinear methods were used, namely mean HR (mHR), long-term irregularity (LTI), interval index (II), low frequency (LF) and high frequency (HF), approximate entropy (ApEn) and sample entropy (SampEn). New parameters for the entropy indices are proposed for the analysis of rats' HR. Bootstrap percentile confidence intervals and nonparametric statistical tests were used in the evaluation of the differences between segments. During mechanical ventilation a clear spectral band was detectable at the ventilation rate, but mHR, II and the 'new' entropy indices were the only significantly changed indices. In the transition from baseline - mechanical-ventilation to mechanical-ventilation induced anoxia, a statistically significant decrease of mHR, II and entropy indices was observed, clearly discriminating these two instances, whereas most linear indices increased. With continued anoxia, most linear indices decreased significantly, whereas entropy remained stably low. These results are consistent with other foetal human and non-human studies and evidence that the rat model may be used for further research on linear and nonlinear analysis of heart-rate dynamics. The transition from baseline to acute anoxia was encompassed by signs of increased activation of the autonomic nervous system sympathetic branch, and decreased or blunted activity of the HR complexity regulatory centres. |
id |
RCAP_dc2dd754102373f7d8901ebcf54fff8d |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/67140 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Linear and nonlinear heart-rate analysis in a rat model of acute anoxiaBiotecnologia ambientalEnvironmental biotechnologyThe objective of this study was the assessment of heart-rate (HR) dynamics with linear and nonlinear methods during episodes of mechanical ventilation and acute anoxia in rats. Namely, to assess whether linear and nonlinear HR analysis was able to discriminate acute anoxia from baseline in rats and if this was consistent with human foetal and adult studies. Five HR segments of 1 min duration, during baseline recording, mechanical ventilation and first, second and third minutes of induced acute anoxia, were analysed in ten adult Wistar rats. Linear time and frequency domain and nonlinear methods were used, namely mean HR (mHR), long-term irregularity (LTI), interval index (II), low frequency (LF) and high frequency (HF), approximate entropy (ApEn) and sample entropy (SampEn). New parameters for the entropy indices are proposed for the analysis of rats' HR. Bootstrap percentile confidence intervals and nonparametric statistical tests were used in the evaluation of the differences between segments. During mechanical ventilation a clear spectral band was detectable at the ventilation rate, but mHR, II and the 'new' entropy indices were the only significantly changed indices. In the transition from baseline - mechanical-ventilation to mechanical-ventilation induced anoxia, a statistically significant decrease of mHR, II and entropy indices was observed, clearly discriminating these two instances, whereas most linear indices increased. With continued anoxia, most linear indices decreased significantly, whereas entropy remained stably low. These results are consistent with other foetal human and non-human studies and evidence that the rat model may be used for further research on linear and nonlinear analysis of heart-rate dynamics. The transition from baseline to acute anoxia was encompassed by signs of increased activation of the autonomic nervous system sympathetic branch, and decreased or blunted activity of the HR complexity regulatory centres.20082008-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/67140eng0967-333410.1088/0967-3334/29/9/010Hernani GoncalvesTiago Henriques CoelhoJoao BernardesAna Paula RochaAna NogueiraAdelino Leite Moreirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T16:00:44Zoai:repositorio-aberto.up.pt:10216/67140Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:36:36.114686Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Linear and nonlinear heart-rate analysis in a rat model of acute anoxia |
title |
Linear and nonlinear heart-rate analysis in a rat model of acute anoxia |
spellingShingle |
Linear and nonlinear heart-rate analysis in a rat model of acute anoxia Hernani Goncalves Biotecnologia ambiental Environmental biotechnology |
title_short |
Linear and nonlinear heart-rate analysis in a rat model of acute anoxia |
title_full |
Linear and nonlinear heart-rate analysis in a rat model of acute anoxia |
title_fullStr |
Linear and nonlinear heart-rate analysis in a rat model of acute anoxia |
title_full_unstemmed |
Linear and nonlinear heart-rate analysis in a rat model of acute anoxia |
title_sort |
Linear and nonlinear heart-rate analysis in a rat model of acute anoxia |
author |
Hernani Goncalves |
author_facet |
Hernani Goncalves Tiago Henriques Coelho Joao Bernardes Ana Paula Rocha Ana Nogueira Adelino Leite Moreira |
author_role |
author |
author2 |
Tiago Henriques Coelho Joao Bernardes Ana Paula Rocha Ana Nogueira Adelino Leite Moreira |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Hernani Goncalves Tiago Henriques Coelho Joao Bernardes Ana Paula Rocha Ana Nogueira Adelino Leite Moreira |
dc.subject.por.fl_str_mv |
Biotecnologia ambiental Environmental biotechnology |
topic |
Biotecnologia ambiental Environmental biotechnology |
description |
The objective of this study was the assessment of heart-rate (HR) dynamics with linear and nonlinear methods during episodes of mechanical ventilation and acute anoxia in rats. Namely, to assess whether linear and nonlinear HR analysis was able to discriminate acute anoxia from baseline in rats and if this was consistent with human foetal and adult studies. Five HR segments of 1 min duration, during baseline recording, mechanical ventilation and first, second and third minutes of induced acute anoxia, were analysed in ten adult Wistar rats. Linear time and frequency domain and nonlinear methods were used, namely mean HR (mHR), long-term irregularity (LTI), interval index (II), low frequency (LF) and high frequency (HF), approximate entropy (ApEn) and sample entropy (SampEn). New parameters for the entropy indices are proposed for the analysis of rats' HR. Bootstrap percentile confidence intervals and nonparametric statistical tests were used in the evaluation of the differences between segments. During mechanical ventilation a clear spectral band was detectable at the ventilation rate, but mHR, II and the 'new' entropy indices were the only significantly changed indices. In the transition from baseline - mechanical-ventilation to mechanical-ventilation induced anoxia, a statistically significant decrease of mHR, II and entropy indices was observed, clearly discriminating these two instances, whereas most linear indices increased. With continued anoxia, most linear indices decreased significantly, whereas entropy remained stably low. These results are consistent with other foetal human and non-human studies and evidence that the rat model may be used for further research on linear and nonlinear analysis of heart-rate dynamics. The transition from baseline to acute anoxia was encompassed by signs of increased activation of the autonomic nervous system sympathetic branch, and decreased or blunted activity of the HR complexity regulatory centres. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 2008-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/67140 |
url |
https://hdl.handle.net/10216/67140 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0967-3334 10.1088/0967-3334/29/9/010 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136274411421696 |