Multimedia content classification metrics for content adaptation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10198/16447 |
Resumo: | Multimedia content consumption is very popular nowadays. However, not every content can be consumed in its original format: the combination of content, transport and access networks, consumption device and usage environment characteristics may all pose restrictions to that purpose. One way to provide the best possible quality to the user is to adapt the content according to these restrictions as well as user preferences. This adaptation stage can be best executed if knowledge about the content is known a-priori. In order to provide this knowledge we classify the content based on metrics to define its temporal and spatial complexity. The temporal complexity classification is based on the Motion Vectors of the predictive encoded frames and on the difference between frames. The spatial complexity classification is based on different implementations of an edge detection algorithm and an image activity measure. |
id |
RCAP_dc7219229d915c418629c8a093872bbe |
---|---|
oai_identifier_str |
oai:bibliotecadigital.ipb.pt:10198/16447 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Multimedia content classification metrics for content adaptationMultimedia classificationTemporal complexitySpatial complexityMultimedia adaptationMultimedia content consumption is very popular nowadays. However, not every content can be consumed in its original format: the combination of content, transport and access networks, consumption device and usage environment characteristics may all pose restrictions to that purpose. One way to provide the best possible quality to the user is to adapt the content according to these restrictions as well as user preferences. This adaptation stage can be best executed if knowledge about the content is known a-priori. In order to provide this knowledge we classify the content based on metrics to define its temporal and spatial complexity. The temporal complexity classification is based on the Motion Vectors of the predictive encoded frames and on the difference between frames. The spatial complexity classification is based on different implementations of an edge detection algorithm and an image activity measure.Biblioteca Digital do IPBFernandes, RuiAndrade, M.T.2018-03-21T10:23:28Z20162016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10198/16447engFernandes, Rui; Andrade, M.T. (2016). Multimedia content classification metrics for content adaptation. U.Porto Journal of Engineering. ISSN 2183-6493. 2:2, p. 14-252183-6493info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-21T10:38:01Zoai:bibliotecadigital.ipb.pt:10198/16447Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:05:51.771313Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Multimedia content classification metrics for content adaptation |
title |
Multimedia content classification metrics for content adaptation |
spellingShingle |
Multimedia content classification metrics for content adaptation Fernandes, Rui Multimedia classification Temporal complexity Spatial complexity Multimedia adaptation |
title_short |
Multimedia content classification metrics for content adaptation |
title_full |
Multimedia content classification metrics for content adaptation |
title_fullStr |
Multimedia content classification metrics for content adaptation |
title_full_unstemmed |
Multimedia content classification metrics for content adaptation |
title_sort |
Multimedia content classification metrics for content adaptation |
author |
Fernandes, Rui |
author_facet |
Fernandes, Rui Andrade, M.T. |
author_role |
author |
author2 |
Andrade, M.T. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Biblioteca Digital do IPB |
dc.contributor.author.fl_str_mv |
Fernandes, Rui Andrade, M.T. |
dc.subject.por.fl_str_mv |
Multimedia classification Temporal complexity Spatial complexity Multimedia adaptation |
topic |
Multimedia classification Temporal complexity Spatial complexity Multimedia adaptation |
description |
Multimedia content consumption is very popular nowadays. However, not every content can be consumed in its original format: the combination of content, transport and access networks, consumption device and usage environment characteristics may all pose restrictions to that purpose. One way to provide the best possible quality to the user is to adapt the content according to these restrictions as well as user preferences. This adaptation stage can be best executed if knowledge about the content is known a-priori. In order to provide this knowledge we classify the content based on metrics to define its temporal and spatial complexity. The temporal complexity classification is based on the Motion Vectors of the predictive encoded frames and on the difference between frames. The spatial complexity classification is based on different implementations of an edge detection algorithm and an image activity measure. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2016-01-01T00:00:00Z 2018-03-21T10:23:28Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10198/16447 |
url |
http://hdl.handle.net/10198/16447 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Fernandes, Rui; Andrade, M.T. (2016). Multimedia content classification metrics for content adaptation. U.Porto Journal of Engineering. ISSN 2183-6493. 2:2, p. 14-25 2183-6493 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135310675705856 |