Quantum Nanostructured Dots-in-Host Perovskite Solar Cells

Detalhes bibliográficos
Autor(a) principal: Alexandre, Miguel Diogo Furtado
Data de Publicação: 2024
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/169663
Resumo: The outstanding physical properties of dots-in-host (QD@Host) hetero semiconductors demand detailed methods to fundamentally understand the best routes to optimize their potentialities for different applications. In particular, the application to intermediate band solar cells, closely followed throughout this work. A 4-band k · p-based method was developed for rocksalt quantum dots (QD) that describes the optical properties of arbitrary QD@Host systems. Starting with the construction of the 1-band spherical potential-based analysis of the QD — emulating commonly fabricated colloidal quantum dot. This initial model was then used to determine the intraband transitions and consequent absorption coefficient of the QD system. Remarkably, it was determined that this intraband-only absorption coefficient can reach values close to those of standard bulk semiconductors (104–105 cm−1). The simple 1-band model, was then expanded to a 4-band model that considers interband interactions, thus allowing the calculation of the interband transitions and consequent absorption coefficient. Here, the full model was firstly validated against well-established literature results. The electron transition rate was then determined and its dependency on the main compute parameters analysed. This was followed by a multi-parameter optimization, considering intermediate band solar cells as a promising application, where the best QD configuration was determined, together with the corre- sponding QD@Host absorption spectrum, to attain the theoretical maximum efficiency (∼ 50%) of this photovoltaic technology. These results show the creation of pronounced sub-bandgap absorption due to the electronic transitions from/to the quantum-confined states, enabling a much broader exploitation of the sunlight spectrum. The best-determined QDs were then used as a basis for QD@Host absorber material in complete planar and photonic-enhanced solar cell architectures. In the latter, I explore light management schemes capable of improving light incoupling towards the absorber medium and, in particular, of amplifying the QD-generated absorption via resonant waveguided modes caused by photonic micro-structuring. Here, each device was structurally optimized to maximize the overall optical absorption. The optimized structures revealed significant below-bandgap absorption produced via embedded QDs, without detriments to the above- bandgap absorption mainly occurring in the host perovskite. The gains solely due to the QDs were ∼ 30%, mostly from the increased below-bandgap absorption. Adding the light-trapping (LT) structures managed to further increase the absorption by ∼ 20% (50% total enhancement relative to the pristine cells). Remarkably, while the pristine device photocurrent is below the standard Schockley-Queisser (SQ) limit for single-bandgap cells, as expected, the LT-enhanced QD@Host solar cells managed to surpass this limit by ∼ 40%, underlining the viability of this technology. All in all, this work demonstrated the combined effects of LT and QD-enabled ab- sorption in perovskite materials and devices. Notably, the QDs provided significant below-bandgap absorption, that is further fuelled by the significant photonic-enabled resonance effects from the LT structures. Beyond that, the optical gains achieved here are also predicted to transfer to the electrical domain, thus improving the overall device efficiency.
id RCAP_dd02e9372aaef801b90b9cba74030cf1
oai_identifier_str oai:run.unl.pt:10362/169663
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Quantum Nanostructured Dots-in-Host Perovskite Solar CellsPhotovoltaicsPhotonicsIntermediate Band Solar CellsQuantum Dots@Perovskite Solar Cellsk · p MethodDomínio/Área Científica::Engenharia e Tecnologia::NanotecnologiaThe outstanding physical properties of dots-in-host (QD@Host) hetero semiconductors demand detailed methods to fundamentally understand the best routes to optimize their potentialities for different applications. In particular, the application to intermediate band solar cells, closely followed throughout this work. A 4-band k · p-based method was developed for rocksalt quantum dots (QD) that describes the optical properties of arbitrary QD@Host systems. Starting with the construction of the 1-band spherical potential-based analysis of the QD — emulating commonly fabricated colloidal quantum dot. This initial model was then used to determine the intraband transitions and consequent absorption coefficient of the QD system. Remarkably, it was determined that this intraband-only absorption coefficient can reach values close to those of standard bulk semiconductors (104–105 cm−1). The simple 1-band model, was then expanded to a 4-band model that considers interband interactions, thus allowing the calculation of the interband transitions and consequent absorption coefficient. Here, the full model was firstly validated against well-established literature results. The electron transition rate was then determined and its dependency on the main compute parameters analysed. This was followed by a multi-parameter optimization, considering intermediate band solar cells as a promising application, where the best QD configuration was determined, together with the corre- sponding QD@Host absorption spectrum, to attain the theoretical maximum efficiency (∼ 50%) of this photovoltaic technology. These results show the creation of pronounced sub-bandgap absorption due to the electronic transitions from/to the quantum-confined states, enabling a much broader exploitation of the sunlight spectrum. The best-determined QDs were then used as a basis for QD@Host absorber material in complete planar and photonic-enhanced solar cell architectures. In the latter, I explore light management schemes capable of improving light incoupling towards the absorber medium and, in particular, of amplifying the QD-generated absorption via resonant waveguided modes caused by photonic micro-structuring. Here, each device was structurally optimized to maximize the overall optical absorption. The optimized structures revealed significant below-bandgap absorption produced via embedded QDs, without detriments to the above- bandgap absorption mainly occurring in the host perovskite. The gains solely due to the QDs were ∼ 30%, mostly from the increased below-bandgap absorption. Adding the light-trapping (LT) structures managed to further increase the absorption by ∼ 20% (50% total enhancement relative to the pristine cells). Remarkably, while the pristine device photocurrent is below the standard Schockley-Queisser (SQ) limit for single-bandgap cells, as expected, the LT-enhanced QD@Host solar cells managed to surpass this limit by ∼ 40%, underlining the viability of this technology. All in all, this work demonstrated the combined effects of LT and QD-enabled ab- sorption in perovskite materials and devices. Notably, the QDs provided significant below-bandgap absorption, that is further fuelled by the significant photonic-enabled resonance effects from the LT structures. Beyond that, the optical gains achieved here are also predicted to transfer to the electrical domain, thus improving the overall device efficiency.As particularidades físicas de semicondutores de hetero junção dots-in-host (QD@Host), apelam à necessidade de métodos detalhados de descrição das suas propriedades, com vista a otimizar as suas potencialidades para diferentes aplicações. Em particular, para a aplicação em células solares de banda intermédia (IBSC), um dos principais focos deste trabalho. Assim, desenvolveu-se um método de k · p, considerando 4 bandas, e focado em materiais de estrutura de halita, para descrever as propriedades óticas de sistemas de quantum dots (QD) arbitrários. Este processo iniciou-se com o desenvolvimento da teoria para 1 banda, considerando um potencial esférico, para emular o formato dos CQDs comummente fabricados. Subsequentemente, este modelo foi usado para determinar a absorção intrabanda e o respetivo coeficiente de absorção do sistema. Notavelmente, verificou-se que o coeficiente de absorção, assim determinado, chega a valores próximos dos já verificados em semicondutores clássicos (104–105 cm−1). O modelo de 1 banda foi então expandido para um modelo de 4 bandas para considerar a interações entre bandas e, dessa forma, permitir o cálculo do respetivo coeficiente de ab- sorção. Neste sentido, o modelo foi inicialmente validado contra resultados extensamente estudados na literatura. Subsequentemente, determinou-se a taxa de transição eletrónica e a sua dependência nos principais parâmetros computacionais em estudo. Este processo foi seguido por uma extensa otimização, que considerou uma célula solar de banda inter- média como aplicação principal, para determinar a melhor configuração para os QDs e o respetivo espectro de absorção do sistema QD@Host, tendo em conta a obtenção do valor máximo teórico de eficiência (∼ 50%) para esta tecnologia. Os resultados demonstraram a criação pronunciada de absorção abaixo do hiato, devido às transições eletrónicas entre os estados quânticos, que melhoram a capacidade de aproveitamento do espectro solar. Os melhores QDs foram então usados como base de um material absorvedor para simulações óticas de células solares com arquiteturas planares e melhoradas fotónicamente. Para estas últimas, utilizaram-se estruturas capazes de focar a luz no material absorvedor, com intenção de amplificar a absorção gerada pelos QDs, devido aos efeitos ressonantes gerados pelas micro-estruturas. Estes dispositivos foram então otimizados, com foco a maximizar a sua absorção. Os melhores resultados mostraram uma absorção abaixo do hiato significativa, sem perdas graves para a absorção acima do hiato. Os ganhos devido à introdução de QDs chegaram a ∼ 30%, principalmente devido aos aumentos na absorção abaixo do hiato. A adição das estruturas de light-trapping (LT) expandiram posteriormente estes ganhos por ∼ 20% (levando a um aumento de ∼ 50% em comparação com as células de base). Notavelmente, enquanto que os dispositivos de base mostraram correntes inferiores ao limite de Schockley-Queisser (SQ) (para células de hiato único), as células melhoradas ultrapassaram este limite por ∼ 40%. Isto sublinha a importância e viabilidade desta tecnologia. Em suma, este trabalho demonstrou a combinação dos efeitos de aprisionamento de luz e de absorção devido à adição de QDs. Notavelmente, os QDs criaram zonas de elevada absorção abaixo do hiato, zonas espectrais estas que foram subsequentemente melhoradas pelos efeitos de ressonância devido à adição das estruturas fotónicas. Além disso, preve-se que a maioria destes ganhos passem para o domínio elétrico, assim melhorando a eficiência do dispositivo final.Mendes, ManuelMartins, RodrigoRUNAlexandre, Miguel Diogo Furtado2024-07-16T12:35:49Z20242024-01-01T00:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10362/169663enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-22T01:38:47Zoai:run.unl.pt:10362/169663Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-22T01:38:47Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Quantum Nanostructured Dots-in-Host Perovskite Solar Cells
title Quantum Nanostructured Dots-in-Host Perovskite Solar Cells
spellingShingle Quantum Nanostructured Dots-in-Host Perovskite Solar Cells
Alexandre, Miguel Diogo Furtado
Photovoltaics
Photonics
Intermediate Band Solar Cells
Quantum Dots@Perovskite Solar Cells
k · p Method
Domínio/Área Científica::Engenharia e Tecnologia::Nanotecnologia
title_short Quantum Nanostructured Dots-in-Host Perovskite Solar Cells
title_full Quantum Nanostructured Dots-in-Host Perovskite Solar Cells
title_fullStr Quantum Nanostructured Dots-in-Host Perovskite Solar Cells
title_full_unstemmed Quantum Nanostructured Dots-in-Host Perovskite Solar Cells
title_sort Quantum Nanostructured Dots-in-Host Perovskite Solar Cells
author Alexandre, Miguel Diogo Furtado
author_facet Alexandre, Miguel Diogo Furtado
author_role author
dc.contributor.none.fl_str_mv Mendes, Manuel
Martins, Rodrigo
RUN
dc.contributor.author.fl_str_mv Alexandre, Miguel Diogo Furtado
dc.subject.por.fl_str_mv Photovoltaics
Photonics
Intermediate Band Solar Cells
Quantum Dots@Perovskite Solar Cells
k · p Method
Domínio/Área Científica::Engenharia e Tecnologia::Nanotecnologia
topic Photovoltaics
Photonics
Intermediate Band Solar Cells
Quantum Dots@Perovskite Solar Cells
k · p Method
Domínio/Área Científica::Engenharia e Tecnologia::Nanotecnologia
description The outstanding physical properties of dots-in-host (QD@Host) hetero semiconductors demand detailed methods to fundamentally understand the best routes to optimize their potentialities for different applications. In particular, the application to intermediate band solar cells, closely followed throughout this work. A 4-band k · p-based method was developed for rocksalt quantum dots (QD) that describes the optical properties of arbitrary QD@Host systems. Starting with the construction of the 1-band spherical potential-based analysis of the QD — emulating commonly fabricated colloidal quantum dot. This initial model was then used to determine the intraband transitions and consequent absorption coefficient of the QD system. Remarkably, it was determined that this intraband-only absorption coefficient can reach values close to those of standard bulk semiconductors (104–105 cm−1). The simple 1-band model, was then expanded to a 4-band model that considers interband interactions, thus allowing the calculation of the interband transitions and consequent absorption coefficient. Here, the full model was firstly validated against well-established literature results. The electron transition rate was then determined and its dependency on the main compute parameters analysed. This was followed by a multi-parameter optimization, considering intermediate band solar cells as a promising application, where the best QD configuration was determined, together with the corre- sponding QD@Host absorption spectrum, to attain the theoretical maximum efficiency (∼ 50%) of this photovoltaic technology. These results show the creation of pronounced sub-bandgap absorption due to the electronic transitions from/to the quantum-confined states, enabling a much broader exploitation of the sunlight spectrum. The best-determined QDs were then used as a basis for QD@Host absorber material in complete planar and photonic-enhanced solar cell architectures. In the latter, I explore light management schemes capable of improving light incoupling towards the absorber medium and, in particular, of amplifying the QD-generated absorption via resonant waveguided modes caused by photonic micro-structuring. Here, each device was structurally optimized to maximize the overall optical absorption. The optimized structures revealed significant below-bandgap absorption produced via embedded QDs, without detriments to the above- bandgap absorption mainly occurring in the host perovskite. The gains solely due to the QDs were ∼ 30%, mostly from the increased below-bandgap absorption. Adding the light-trapping (LT) structures managed to further increase the absorption by ∼ 20% (50% total enhancement relative to the pristine cells). Remarkably, while the pristine device photocurrent is below the standard Schockley-Queisser (SQ) limit for single-bandgap cells, as expected, the LT-enhanced QD@Host solar cells managed to surpass this limit by ∼ 40%, underlining the viability of this technology. All in all, this work demonstrated the combined effects of LT and QD-enabled ab- sorption in perovskite materials and devices. Notably, the QDs provided significant below-bandgap absorption, that is further fuelled by the significant photonic-enabled resonance effects from the LT structures. Beyond that, the optical gains achieved here are also predicted to transfer to the electrical domain, thus improving the overall device efficiency.
publishDate 2024
dc.date.none.fl_str_mv 2024-07-16T12:35:49Z
2024
2024-01-01T00:00:00Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/169663
url http://hdl.handle.net/10362/169663
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817546601796730880