Multi target tracking and detection using LIDAR and velocity obstacles for real time definition of collision zones
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/31317 |
Resumo: | The implementation of autonomous vehicles on public roads faces many challenges, being the most important ensuring the safety for everyone within that environment. In order for these unmanned machines to be applied in our every-day lives, they first need to be able to correctly identify all possible threats, to then act accordingly. As part of the Atlas project, this dissertation main goal is to determine these threats based on the velocity and dimensions of the detected obstacles. The detection is made using two 2D laser sensors SICK LMS151. These sensors, strategically placed in the front bumper of the ATLASCAR2, allow to perceive its surrounding in an almost 360° (except in the back near the trunk). A detection and tracking algorithm, previously developed at Universidade de Aveiro, was used and refurbished to determine the obstacles’ velocity used to verify if the ATLASCAR2 is in a collision path. Initially, the detection and tracking algorithm was tested using a static LIDAR to retrieved data, resulting in good performances. However the deployment in dynamic environments led to a study of the influence of the ATLASCAR2 ego motion, specifically while it is turning, on the perceived obstacle velocity. The LIDAR’s moving coordinate frame imposes an apparent velocity on the obstacles making the tracking algorithm’s data not as reliable. From this study resulted also a ROS application which allows to visualize the short term path of the ATLASCAR2 |
id |
RCAP_df2019710a8140ac405f455b884f4395 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/31317 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Multi target tracking and detection using LIDAR and velocity obstacles for real time definition of collision zonesLIDARObstacle detectionCollision detectionVelocity obstaclesROS frameworkThe implementation of autonomous vehicles on public roads faces many challenges, being the most important ensuring the safety for everyone within that environment. In order for these unmanned machines to be applied in our every-day lives, they first need to be able to correctly identify all possible threats, to then act accordingly. As part of the Atlas project, this dissertation main goal is to determine these threats based on the velocity and dimensions of the detected obstacles. The detection is made using two 2D laser sensors SICK LMS151. These sensors, strategically placed in the front bumper of the ATLASCAR2, allow to perceive its surrounding in an almost 360° (except in the back near the trunk). A detection and tracking algorithm, previously developed at Universidade de Aveiro, was used and refurbished to determine the obstacles’ velocity used to verify if the ATLASCAR2 is in a collision path. Initially, the detection and tracking algorithm was tested using a static LIDAR to retrieved data, resulting in good performances. However the deployment in dynamic environments led to a study of the influence of the ATLASCAR2 ego motion, specifically while it is turning, on the perceived obstacle velocity. The LIDAR’s moving coordinate frame imposes an apparent velocity on the obstacles making the tracking algorithm’s data not as reliable. From this study resulted also a ROS application which allows to visualize the short term path of the ATLASCAR2A implementação de veículos autónomos nas estradas enfrenta inúmeros desafios, sendo a segurança de todos os intervenientes o mais importante. Com o intuito de introduzir estas máquinas autónomas no nosso quotidiano, estas devem primeiramente ser capazes de detetar corretamente todas as possíveis ameaças para depois agir de acordo. No âmbito do projeto Atlas, esta dissertação tem como objetivo determinar estas ameaças baseando-se na velocidade dos obstáculos detetados. Esta deteção é realizada através de dois sensores laser 2D SICK LMS151. Estes sensores, posicionados estrategicamente na parte da frente do parachoques do ATLASCAR2, permite uma perceção de aproximadamente 360° em volta do carro (com a exceção da parte traseira do veículo). Um algoritmo de deteção e seguimento, já desenvolvido na Universidade de Aveiro, foi usado e adaptado para determinar a velocidade de obstáculos e para verificar se o ATLASCAR2 se encontrava num percurso que poderia resultar numa colisão. Inicialmente, o algoritmo de deteção e seguimento foi testado usando o sensor LIDAR estático para retirar dados, resultando numa boa performance. No entanto, a utilização do mesmo em ambientes dinâmicos deu origem a um estudo para avaliar a influência do movimento próprio do ATLASCAR2, com foco na situação em que se encontra a realizar uma curva, na velocidade de um obstáculo detetado. O referencial em movimento do LIDAR impõe uma velocidade aparente nos obstáculos, fazendo com que os dados recolhidos pelo algoritmo não sejam de confiança. Deste estudo resultou uma aplicação ROS, esta permite a vizualisação do movimento (durante um curto espaço de tempo) do ATLASCAR22021-05-06T08:34:29Z2020-07-23T00:00:00Z2020-07-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/31317engCosta, Rui Pedro Leite Carvalhoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:00:26Zoai:ria.ua.pt:10773/31317Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:03:13.358321Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Multi target tracking and detection using LIDAR and velocity obstacles for real time definition of collision zones |
title |
Multi target tracking and detection using LIDAR and velocity obstacles for real time definition of collision zones |
spellingShingle |
Multi target tracking and detection using LIDAR and velocity obstacles for real time definition of collision zones Costa, Rui Pedro Leite Carvalho LIDAR Obstacle detection Collision detection Velocity obstacles ROS framework |
title_short |
Multi target tracking and detection using LIDAR and velocity obstacles for real time definition of collision zones |
title_full |
Multi target tracking and detection using LIDAR and velocity obstacles for real time definition of collision zones |
title_fullStr |
Multi target tracking and detection using LIDAR and velocity obstacles for real time definition of collision zones |
title_full_unstemmed |
Multi target tracking and detection using LIDAR and velocity obstacles for real time definition of collision zones |
title_sort |
Multi target tracking and detection using LIDAR and velocity obstacles for real time definition of collision zones |
author |
Costa, Rui Pedro Leite Carvalho |
author_facet |
Costa, Rui Pedro Leite Carvalho |
author_role |
author |
dc.contributor.author.fl_str_mv |
Costa, Rui Pedro Leite Carvalho |
dc.subject.por.fl_str_mv |
LIDAR Obstacle detection Collision detection Velocity obstacles ROS framework |
topic |
LIDAR Obstacle detection Collision detection Velocity obstacles ROS framework |
description |
The implementation of autonomous vehicles on public roads faces many challenges, being the most important ensuring the safety for everyone within that environment. In order for these unmanned machines to be applied in our every-day lives, they first need to be able to correctly identify all possible threats, to then act accordingly. As part of the Atlas project, this dissertation main goal is to determine these threats based on the velocity and dimensions of the detected obstacles. The detection is made using two 2D laser sensors SICK LMS151. These sensors, strategically placed in the front bumper of the ATLASCAR2, allow to perceive its surrounding in an almost 360° (except in the back near the trunk). A detection and tracking algorithm, previously developed at Universidade de Aveiro, was used and refurbished to determine the obstacles’ velocity used to verify if the ATLASCAR2 is in a collision path. Initially, the detection and tracking algorithm was tested using a static LIDAR to retrieved data, resulting in good performances. However the deployment in dynamic environments led to a study of the influence of the ATLASCAR2 ego motion, specifically while it is turning, on the perceived obstacle velocity. The LIDAR’s moving coordinate frame imposes an apparent velocity on the obstacles making the tracking algorithm’s data not as reliable. From this study resulted also a ROS application which allows to visualize the short term path of the ATLASCAR2 |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-23T00:00:00Z 2020-07-23 2021-05-06T08:34:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/31317 |
url |
http://hdl.handle.net/10773/31317 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137687642308608 |