The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.8/8523 |
Resumo: | Acknowledgements: We wish to express our gratitude to Alex Patchkoria for pointing out to us the existence of some old literature, of not easy access, related to the subject of this paper. This work was partially supported by the Centre for Mathematics of the University of Coimbra – UID/MAT/00324/2013, by ESTG and CDRSP from the Polytechnical Institute of Leiria – UID/Multi/04044/2013, funded by the Portuguese Government through FCT/MCTES and co-funded by the European Regional Development Fund through the Partnership Agreement PT2020. This work was partially supported by the Programma per Giovani Ricercatori “Rita Levi-Montalcini”, Funded by the Italian government through MIUR. |
id |
RCAP_df984e36ddf0da6527b6a9ceebb1c98f |
---|---|
oai_identifier_str |
oai:iconline.ipleiria.pt:10400.8/8523 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operationsMonoids with operationsSpecial Schreier extensionNine LemmaPush forwardBaer sumAcknowledgements: We wish to express our gratitude to Alex Patchkoria for pointing out to us the existence of some old literature, of not easy access, related to the subject of this paper. This work was partially supported by the Centre for Mathematics of the University of Coimbra – UID/MAT/00324/2013, by ESTG and CDRSP from the Polytechnical Institute of Leiria – UID/Multi/04044/2013, funded by the Portuguese Government through FCT/MCTES and co-funded by the European Regional Development Fund through the Partnership Agreement PT2020. This work was partially supported by the Programma per Giovani Ricercatori “Rita Levi-Montalcini”, Funded by the Italian government through MIUR.We show that the Nine Lemma holds for special Schreier extensions of monoids with operations. This fact is used to obtain a push forward construction for special Schreier extensions with abelian kernel. This construction permits to give a functorial description of the Baer sum of such extensions.SpringerIC-OnlineMartins-Ferreira, NelsonMontoli, AndreaSobral, Manuela2023-05-26T13:41:25Z2018-08-102018-08-10T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.8/8523engMartins-Ferreira, N., Montoli, A. & Sobral, M. The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations. Semigroup Forum 97, 325–352 (2018). https://doi.org/10.1007/s00233-018-9962-11432-2137https://doi.org/10.1007/s00233-018-9962-1info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-17T15:57:30Zoai:iconline.ipleiria.pt:10400.8/8523Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:51:13.383317Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations |
title |
The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations |
spellingShingle |
The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations Martins-Ferreira, Nelson Monoids with operations Special Schreier extension Nine Lemma Push forward Baer sum |
title_short |
The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations |
title_full |
The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations |
title_fullStr |
The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations |
title_full_unstemmed |
The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations |
title_sort |
The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations |
author |
Martins-Ferreira, Nelson |
author_facet |
Martins-Ferreira, Nelson Montoli, Andrea Sobral, Manuela |
author_role |
author |
author2 |
Montoli, Andrea Sobral, Manuela |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
IC-Online |
dc.contributor.author.fl_str_mv |
Martins-Ferreira, Nelson Montoli, Andrea Sobral, Manuela |
dc.subject.por.fl_str_mv |
Monoids with operations Special Schreier extension Nine Lemma Push forward Baer sum |
topic |
Monoids with operations Special Schreier extension Nine Lemma Push forward Baer sum |
description |
Acknowledgements: We wish to express our gratitude to Alex Patchkoria for pointing out to us the existence of some old literature, of not easy access, related to the subject of this paper. This work was partially supported by the Centre for Mathematics of the University of Coimbra – UID/MAT/00324/2013, by ESTG and CDRSP from the Polytechnical Institute of Leiria – UID/Multi/04044/2013, funded by the Portuguese Government through FCT/MCTES and co-funded by the European Regional Development Fund through the Partnership Agreement PT2020. This work was partially supported by the Programma per Giovani Ricercatori “Rita Levi-Montalcini”, Funded by the Italian government through MIUR. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-08-10 2018-08-10T00:00:00Z 2023-05-26T13:41:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.8/8523 |
url |
http://hdl.handle.net/10400.8/8523 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Martins-Ferreira, N., Montoli, A. & Sobral, M. The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations. Semigroup Forum 97, 325–352 (2018). https://doi.org/10.1007/s00233-018-9962-1 1432-2137 https://doi.org/10.1007/s00233-018-9962-1 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137003613192192 |