A vision transformer architecture for the automated segmentation of retinal lesions in spectral domain optical coherence tomography images
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/148025 |
Resumo: | Philippi, D., Rothaus, K., & Castelli, M. (2023). A vision transformer architecture for the automated segmentation of retinal lesions in spectral domain optical coherence tomography images. Scientific Reports, 13(1), 1-14. [517]. https://doi.org/10.1038/s41598-023-27616-1 --- Funding Information: This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS. Mauro Castelli acknowledges the financial support from the Slovenian Research Agency (research core funding no. P5-0410). |
id |
RCAP_e02734e3d19b7f4385539e3f43e09d17 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/148025 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A vision transformer architecture for the automated segmentation of retinal lesions in spectral domain optical coherence tomography imagesGeneralSDG 3 - Good Health and Well-beingPhilippi, D., Rothaus, K., & Castelli, M. (2023). A vision transformer architecture for the automated segmentation of retinal lesions in spectral domain optical coherence tomography images. Scientific Reports, 13(1), 1-14. [517]. https://doi.org/10.1038/s41598-023-27616-1 --- Funding Information: This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS. Mauro Castelli acknowledges the financial support from the Slovenian Research Agency (research core funding no. P5-0410).Neovascular age-related macular degeneration (nAMD) is one of the major causes of irreversible blindness and is characterized by accumulations of different lesions inside the retina. AMD biomarkers enable experts to grade the AMD and could be used for therapy prognosis and individualized treatment decisions. In particular, intra-retinal fluid (IRF), sub-retinal fluid (SRF), and pigment epithelium detachment (PED) are prominent biomarkers for grading neovascular AMD. Spectral-domain optical coherence tomography (SD-OCT) revolutionized nAMD early diagnosis by providing cross-sectional images of the retina. Automatic segmentation and quantification of IRF, SRF, and PED in SD-OCT images can be extremely useful for clinical decision-making. Despite the excellent performance of convolutional neural network (CNN)-based methods, the task still presents some challenges due to relevant variations in the location, size, shape, and texture of the lesions. This work adopts a transformer-based method to automatically segment retinal lesion from SD-OCT images and qualitatively and quantitatively evaluate its performance against CNN-based methods. The method combines the efficient long-range feature extraction and aggregation capabilities of Vision Transformers with data-efficient training of CNNs. The proposed method was tested on a private dataset containing 3842 2-dimensional SD-OCT retina images, manually labeled by experts of the Franziskus Eye-Center, Muenster. While one of the competitors presents a better performance in terms of Dice score, the proposed method is significantly less computationally expensive. Thus, future research will focus on the proposed network’s architecture to increase its segmentation performance while maintaining its computational efficiency.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNPhilippi, DanielRothaus, KaiCastelli, Mauro2023-01-23T22:16:11Z2023-01-102023-01-10T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article14application/pdfhttp://hdl.handle.net/10362/148025eng2045-2322PURE: 51327230https://doi.org/10.1038/s41598-023-27616-1info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:29:17Zoai:run.unl.pt:10362/148025Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:53:09.569299Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A vision transformer architecture for the automated segmentation of retinal lesions in spectral domain optical coherence tomography images |
title |
A vision transformer architecture for the automated segmentation of retinal lesions in spectral domain optical coherence tomography images |
spellingShingle |
A vision transformer architecture for the automated segmentation of retinal lesions in spectral domain optical coherence tomography images Philippi, Daniel General SDG 3 - Good Health and Well-being |
title_short |
A vision transformer architecture for the automated segmentation of retinal lesions in spectral domain optical coherence tomography images |
title_full |
A vision transformer architecture for the automated segmentation of retinal lesions in spectral domain optical coherence tomography images |
title_fullStr |
A vision transformer architecture for the automated segmentation of retinal lesions in spectral domain optical coherence tomography images |
title_full_unstemmed |
A vision transformer architecture for the automated segmentation of retinal lesions in spectral domain optical coherence tomography images |
title_sort |
A vision transformer architecture for the automated segmentation of retinal lesions in spectral domain optical coherence tomography images |
author |
Philippi, Daniel |
author_facet |
Philippi, Daniel Rothaus, Kai Castelli, Mauro |
author_role |
author |
author2 |
Rothaus, Kai Castelli, Mauro |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Philippi, Daniel Rothaus, Kai Castelli, Mauro |
dc.subject.por.fl_str_mv |
General SDG 3 - Good Health and Well-being |
topic |
General SDG 3 - Good Health and Well-being |
description |
Philippi, D., Rothaus, K., & Castelli, M. (2023). A vision transformer architecture for the automated segmentation of retinal lesions in spectral domain optical coherence tomography images. Scientific Reports, 13(1), 1-14. [517]. https://doi.org/10.1038/s41598-023-27616-1 --- Funding Information: This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS. Mauro Castelli acknowledges the financial support from the Slovenian Research Agency (research core funding no. P5-0410). |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-01-23T22:16:11Z 2023-01-10 2023-01-10T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/148025 |
url |
http://hdl.handle.net/10362/148025 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2045-2322 PURE: 51327230 https://doi.org/10.1038/s41598-023-27616-1 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
14 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138122437492736 |