Null and timelike circular orbits from equivalent 2D metrics

Detalhes bibliográficos
Autor(a) principal: Cunha, Pedro V P
Data de Publicação: 2022
Outros Autores: Herdeiro, Carlos A R, Novo, João P A
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/35213
Resumo: The motion of particles on spherical 1 + 3 dimensional spacetimes can, under some assumptions, be described by the curves on a two-dimensional manifold, the optical and Jacobi manifolds for null and timelike curves, respectively. In this paper we resort to auxiliary two-dimensional metrics to study circular geodesics of generic static, spherically symmetric, and asymptotically flat 1 + 3 dimensional spacetimes, whose functions are at least C 2 smooth. This is done by studying the Gaussian curvature of the bidimensional equivalent manifold as well as the geodesic curvature of circular paths on these. This study considers both null and timelike circular geodesics. The study of null geodesics through the optical manifold retrieves the known result of the number of light rings on the spacetime outside a black hole and on spacetimes with horizonless compact objects. With an equivalent procedure we can formulate a similar theorem on the number of marginally stable timelike circular orbits of a given spacetime satisfying the previously mentioned assumptions.
id RCAP_e1b66f7e1b9892ca4f282b0abca1555b
oai_identifier_str oai:ria.ua.pt:10773/35213
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Null and timelike circular orbits from equivalent 2D metricsBlack holesLight ringsMarginally stable circular orbitsThe motion of particles on spherical 1 + 3 dimensional spacetimes can, under some assumptions, be described by the curves on a two-dimensional manifold, the optical and Jacobi manifolds for null and timelike curves, respectively. In this paper we resort to auxiliary two-dimensional metrics to study circular geodesics of generic static, spherically symmetric, and asymptotically flat 1 + 3 dimensional spacetimes, whose functions are at least C 2 smooth. This is done by studying the Gaussian curvature of the bidimensional equivalent manifold as well as the geodesic curvature of circular paths on these. This study considers both null and timelike circular geodesics. The study of null geodesics through the optical manifold retrieves the known result of the number of light rings on the spacetime outside a black hole and on spacetimes with horizonless compact objects. With an equivalent procedure we can formulate a similar theorem on the number of marginally stable timelike circular orbits of a given spacetime satisfying the previously mentioned assumptions.IOP Publishing2022-11-18T14:46:19Z2022-01-01T00:00:00Z2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/35213eng0264-938110.1088/1361-6382/ac987eCunha, Pedro V PHerdeiro, Carlos A RNovo, João P Ainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:07:40Zoai:ria.ua.pt:10773/35213Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:06:14.296176Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Null and timelike circular orbits from equivalent 2D metrics
title Null and timelike circular orbits from equivalent 2D metrics
spellingShingle Null and timelike circular orbits from equivalent 2D metrics
Cunha, Pedro V P
Black holes
Light rings
Marginally stable circular orbits
title_short Null and timelike circular orbits from equivalent 2D metrics
title_full Null and timelike circular orbits from equivalent 2D metrics
title_fullStr Null and timelike circular orbits from equivalent 2D metrics
title_full_unstemmed Null and timelike circular orbits from equivalent 2D metrics
title_sort Null and timelike circular orbits from equivalent 2D metrics
author Cunha, Pedro V P
author_facet Cunha, Pedro V P
Herdeiro, Carlos A R
Novo, João P A
author_role author
author2 Herdeiro, Carlos A R
Novo, João P A
author2_role author
author
dc.contributor.author.fl_str_mv Cunha, Pedro V P
Herdeiro, Carlos A R
Novo, João P A
dc.subject.por.fl_str_mv Black holes
Light rings
Marginally stable circular orbits
topic Black holes
Light rings
Marginally stable circular orbits
description The motion of particles on spherical 1 + 3 dimensional spacetimes can, under some assumptions, be described by the curves on a two-dimensional manifold, the optical and Jacobi manifolds for null and timelike curves, respectively. In this paper we resort to auxiliary two-dimensional metrics to study circular geodesics of generic static, spherically symmetric, and asymptotically flat 1 + 3 dimensional spacetimes, whose functions are at least C 2 smooth. This is done by studying the Gaussian curvature of the bidimensional equivalent manifold as well as the geodesic curvature of circular paths on these. This study considers both null and timelike circular geodesics. The study of null geodesics through the optical manifold retrieves the known result of the number of light rings on the spacetime outside a black hole and on spacetimes with horizonless compact objects. With an equivalent procedure we can formulate a similar theorem on the number of marginally stable timelike circular orbits of a given spacetime satisfying the previously mentioned assumptions.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-18T14:46:19Z
2022-01-01T00:00:00Z
2022
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/35213
url http://hdl.handle.net/10773/35213
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0264-9381
10.1088/1361-6382/ac987e
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137717318057984