Null and timelike circular orbits from equivalent 2D metrics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/35213 |
Resumo: | The motion of particles on spherical 1 + 3 dimensional spacetimes can, under some assumptions, be described by the curves on a two-dimensional manifold, the optical and Jacobi manifolds for null and timelike curves, respectively. In this paper we resort to auxiliary two-dimensional metrics to study circular geodesics of generic static, spherically symmetric, and asymptotically flat 1 + 3 dimensional spacetimes, whose functions are at least C 2 smooth. This is done by studying the Gaussian curvature of the bidimensional equivalent manifold as well as the geodesic curvature of circular paths on these. This study considers both null and timelike circular geodesics. The study of null geodesics through the optical manifold retrieves the known result of the number of light rings on the spacetime outside a black hole and on spacetimes with horizonless compact objects. With an equivalent procedure we can formulate a similar theorem on the number of marginally stable timelike circular orbits of a given spacetime satisfying the previously mentioned assumptions. |
id |
RCAP_e1b66f7e1b9892ca4f282b0abca1555b |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/35213 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Null and timelike circular orbits from equivalent 2D metricsBlack holesLight ringsMarginally stable circular orbitsThe motion of particles on spherical 1 + 3 dimensional spacetimes can, under some assumptions, be described by the curves on a two-dimensional manifold, the optical and Jacobi manifolds for null and timelike curves, respectively. In this paper we resort to auxiliary two-dimensional metrics to study circular geodesics of generic static, spherically symmetric, and asymptotically flat 1 + 3 dimensional spacetimes, whose functions are at least C 2 smooth. This is done by studying the Gaussian curvature of the bidimensional equivalent manifold as well as the geodesic curvature of circular paths on these. This study considers both null and timelike circular geodesics. The study of null geodesics through the optical manifold retrieves the known result of the number of light rings on the spacetime outside a black hole and on spacetimes with horizonless compact objects. With an equivalent procedure we can formulate a similar theorem on the number of marginally stable timelike circular orbits of a given spacetime satisfying the previously mentioned assumptions.IOP Publishing2022-11-18T14:46:19Z2022-01-01T00:00:00Z2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/35213eng0264-938110.1088/1361-6382/ac987eCunha, Pedro V PHerdeiro, Carlos A RNovo, João P Ainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:07:40Zoai:ria.ua.pt:10773/35213Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:06:14.296176Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Null and timelike circular orbits from equivalent 2D metrics |
title |
Null and timelike circular orbits from equivalent 2D metrics |
spellingShingle |
Null and timelike circular orbits from equivalent 2D metrics Cunha, Pedro V P Black holes Light rings Marginally stable circular orbits |
title_short |
Null and timelike circular orbits from equivalent 2D metrics |
title_full |
Null and timelike circular orbits from equivalent 2D metrics |
title_fullStr |
Null and timelike circular orbits from equivalent 2D metrics |
title_full_unstemmed |
Null and timelike circular orbits from equivalent 2D metrics |
title_sort |
Null and timelike circular orbits from equivalent 2D metrics |
author |
Cunha, Pedro V P |
author_facet |
Cunha, Pedro V P Herdeiro, Carlos A R Novo, João P A |
author_role |
author |
author2 |
Herdeiro, Carlos A R Novo, João P A |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Cunha, Pedro V P Herdeiro, Carlos A R Novo, João P A |
dc.subject.por.fl_str_mv |
Black holes Light rings Marginally stable circular orbits |
topic |
Black holes Light rings Marginally stable circular orbits |
description |
The motion of particles on spherical 1 + 3 dimensional spacetimes can, under some assumptions, be described by the curves on a two-dimensional manifold, the optical and Jacobi manifolds for null and timelike curves, respectively. In this paper we resort to auxiliary two-dimensional metrics to study circular geodesics of generic static, spherically symmetric, and asymptotically flat 1 + 3 dimensional spacetimes, whose functions are at least C 2 smooth. This is done by studying the Gaussian curvature of the bidimensional equivalent manifold as well as the geodesic curvature of circular paths on these. This study considers both null and timelike circular geodesics. The study of null geodesics through the optical manifold retrieves the known result of the number of light rings on the spacetime outside a black hole and on spacetimes with horizonless compact objects. With an equivalent procedure we can formulate a similar theorem on the number of marginally stable timelike circular orbits of a given spacetime satisfying the previously mentioned assumptions. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-18T14:46:19Z 2022-01-01T00:00:00Z 2022 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/35213 |
url |
http://hdl.handle.net/10773/35213 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0264-9381 10.1088/1361-6382/ac987e |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137717318057984 |