Geodesic motion in the spacetime of two (un)equal mass black holes

Detalhes bibliográficos
Autor(a) principal: Takeda, Carolina Sayuri
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/76/76131/tde-18052020-144531/
Resumo: One of the main approaches to study a spacetime and understand its structure is through the investigation of geodesics. This work aims to explore the Majumdar-Papapetrou metric for a binary system of black holes, describing two extreme Reissner-Nordström black holes. The name extreme comes from the fact that the absolute value of the charge is equal to the mass of the black holes. This is a situation of equilibrium, since the gravitational attraction is exactly compensated by the electrical repulsion. For a more complete analysis, timelike and lightlike geodesics were studied for the cases of equal and different masses of the black holes, separating the cases in the plane z = 0 and away from it. In the plane z = 0, the stability of the orbits with respect to the radius ρ was analyzed and for the situation of equal masses, bounded orbits were studied and their eccentricities calculated. By examining circular and bounded orbits in different scenarios, it was possible to find parameter regions with circular orbits and establish a relation between the amount of possible circular orbits and the black holes masses. Another point was the evaluation of the behavior of orbits for extreme differences between the values of the masses. All of these studies brought some insights into the structure of this binary MP spacetime and might be a first step towards more complex systems, such as multi black holes.
id USP_6907d7583f83e25c88a21d73bd3c7391
oai_identifier_str oai:teses.usp.br:tde-18052020-144531
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Geodesic motion in the spacetime of two (un)equal mass black holesMovimento geodésico no espaço-tempo de dois buracos negros de massas iguais e diferentesBlack holeBuraco negroCircular orbitsGeneral relativityGeodesicGeodésicaMajumdar-Papapetrou metricMétrica de Majumdar-PapapetrouÓrbitas circularesRelatividade geralOne of the main approaches to study a spacetime and understand its structure is through the investigation of geodesics. This work aims to explore the Majumdar-Papapetrou metric for a binary system of black holes, describing two extreme Reissner-Nordström black holes. The name extreme comes from the fact that the absolute value of the charge is equal to the mass of the black holes. This is a situation of equilibrium, since the gravitational attraction is exactly compensated by the electrical repulsion. For a more complete analysis, timelike and lightlike geodesics were studied for the cases of equal and different masses of the black holes, separating the cases in the plane z = 0 and away from it. In the plane z = 0, the stability of the orbits with respect to the radius ρ was analyzed and for the situation of equal masses, bounded orbits were studied and their eccentricities calculated. By examining circular and bounded orbits in different scenarios, it was possible to find parameter regions with circular orbits and establish a relation between the amount of possible circular orbits and the black holes masses. Another point was the evaluation of the behavior of orbits for extreme differences between the values of the masses. All of these studies brought some insights into the structure of this binary MP spacetime and might be a first step towards more complex systems, such as multi black holes.Uma das principais abordagens usadas para estudar um certo espaço-tempo e entender sobre a sua estrutura, é a investigação de geodésicas. Este trabalho tem como objetivo explorar a métrica de Majumdar-Papetrou para um sistema binário de buracos negros, descrevendo buracos negros extremos de Reissner-Nordström. Este nome extremo é dado pelo fato de que o valor absoluto da carga é igual a massa dos buracos negros. Esta é uma situação de equilíbrio, pois a atração gravitacional é exatamente balanceada pela repulsão eletromagnética. Para uma análise mais completa, foram estudadas geodésicas tipo tempo e tipo luz para os casos de massas iguais e diferentes, também restringindo ao plano z = 0 e fora dele. Neste plano z = 0, a estabilidade das órbitas em relação ao raio ρ foi analisada e para a situação de massas iguais, foram estudadas órbitas limitadas e calculadas suas excentricidades. Através da inspeção de órbitas circulares e limitadas em diferentes cenários, foi possível encontrar regiões com órbitas circulares e estabelecer uma relação entre a quantidade dessas órbitas circulares e as massas dos buracos negros. Outra questão foi a análise do comportamento das órbitas quanto a diferenças extremas dos valores das massas. Todos esses estudos elucidaram a estrutura desse espaço-tempo binário de MP e podem se tornar o primeiro passo para compreender sistemas mais complexos, como múltiplos buracos negros.Biblioteca Digitais de Teses e Dissertações da USPHartmann, BettiTakeda, Carolina Sayuri2020-02-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76131/tde-18052020-144531/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-05-27T06:19:02Zoai:teses.usp.br:tde-18052020-144531Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-05-27T06:19:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Geodesic motion in the spacetime of two (un)equal mass black holes
Movimento geodésico no espaço-tempo de dois buracos negros de massas iguais e diferentes
title Geodesic motion in the spacetime of two (un)equal mass black holes
spellingShingle Geodesic motion in the spacetime of two (un)equal mass black holes
Takeda, Carolina Sayuri
Black hole
Buraco negro
Circular orbits
General relativity
Geodesic
Geodésica
Majumdar-Papapetrou metric
Métrica de Majumdar-Papapetrou
Órbitas circulares
Relatividade geral
title_short Geodesic motion in the spacetime of two (un)equal mass black holes
title_full Geodesic motion in the spacetime of two (un)equal mass black holes
title_fullStr Geodesic motion in the spacetime of two (un)equal mass black holes
title_full_unstemmed Geodesic motion in the spacetime of two (un)equal mass black holes
title_sort Geodesic motion in the spacetime of two (un)equal mass black holes
author Takeda, Carolina Sayuri
author_facet Takeda, Carolina Sayuri
author_role author
dc.contributor.none.fl_str_mv Hartmann, Betti
dc.contributor.author.fl_str_mv Takeda, Carolina Sayuri
dc.subject.por.fl_str_mv Black hole
Buraco negro
Circular orbits
General relativity
Geodesic
Geodésica
Majumdar-Papapetrou metric
Métrica de Majumdar-Papapetrou
Órbitas circulares
Relatividade geral
topic Black hole
Buraco negro
Circular orbits
General relativity
Geodesic
Geodésica
Majumdar-Papapetrou metric
Métrica de Majumdar-Papapetrou
Órbitas circulares
Relatividade geral
description One of the main approaches to study a spacetime and understand its structure is through the investigation of geodesics. This work aims to explore the Majumdar-Papapetrou metric for a binary system of black holes, describing two extreme Reissner-Nordström black holes. The name extreme comes from the fact that the absolute value of the charge is equal to the mass of the black holes. This is a situation of equilibrium, since the gravitational attraction is exactly compensated by the electrical repulsion. For a more complete analysis, timelike and lightlike geodesics were studied for the cases of equal and different masses of the black holes, separating the cases in the plane z = 0 and away from it. In the plane z = 0, the stability of the orbits with respect to the radius ρ was analyzed and for the situation of equal masses, bounded orbits were studied and their eccentricities calculated. By examining circular and bounded orbits in different scenarios, it was possible to find parameter regions with circular orbits and establish a relation between the amount of possible circular orbits and the black holes masses. Another point was the evaluation of the behavior of orbits for extreme differences between the values of the masses. All of these studies brought some insights into the structure of this binary MP spacetime and might be a first step towards more complex systems, such as multi black holes.
publishDate 2020
dc.date.none.fl_str_mv 2020-02-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/76/76131/tde-18052020-144531/
url https://www.teses.usp.br/teses/disponiveis/76/76131/tde-18052020-144531/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257099245977600