Mesorhizobium ciceri LMS-1 expressing an exogenous 1-aminocyclopropane-1-carboxylate (ACC) deaminase increases its nodulation abilities and chickpea plant resistance to soil constraints

Detalhes bibliográficos
Autor(a) principal: Nascimento, Francisco
Data de Publicação: 2012
Outros Autores: Brígido, Clarisse, Glick, Bernard, Oliveira, Solange, Alho, Luís
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/5379
Resumo: Aims: Our goal was to understand the symbiotic behaviour of a Mesorhizobium strain expressing an exogenous 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which was used as an inoculant of chickpea (Cicer arietinum) plants growing in soil. Methods and Results: Mesorhizobium ciceri LMS-1 (pRKACC) was tested for its plant growth promotion abilities on two chickpea cultivars (ELMO and CHK3226) growing in nonsterilized soil that displayed biotic and abiotic constraints to plant growth. When compared to its wild-type form, the M. ciceri LMS-1 (pRKACC) strain showed an increased nodulation performance of c. 125 and 180% and increased nodule weight of c. 45 and 147% in chickpea cultivars ELMO and CHK3226, respectively. Mesorhizobium ciceri LMS-1 (pRKACC) was also able to augment the total biomass of both chickpea plant cultivars by c. 45% and to reduce chickpea root rot disease susceptibility. Conclusions: The results obtained indicate that the production of ACC deaminase under free living conditions by Mesorhizobium strains increases the nodulation, plant growth abilities and biocontrol potential of these strains. Significance and Impact of the Study: This is the first study regarding the use of a transformed rhizobial strain expressing an exogenous ACC deaminase in different plant cultivars growing in soil. Hence, obtaining Mesorhizobium strains with high ACC deaminase activity is a matter of extreme importance for the development of inoculants for field applications.
id RCAP_e24a063487c07a93351a111b4d15256b
oai_identifier_str oai:dspace.uevora.pt:10174/5379
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Mesorhizobium ciceri LMS-1 expressing an exogenous 1-aminocyclopropane-1-carboxylate (ACC) deaminase increases its nodulation abilities and chickpea plant resistance to soil constraints1-aminocyclopropane-1-carboxylate deaminaseacdSchickpeaMesorhizobiumroot rotsoilAims: Our goal was to understand the symbiotic behaviour of a Mesorhizobium strain expressing an exogenous 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which was used as an inoculant of chickpea (Cicer arietinum) plants growing in soil. Methods and Results: Mesorhizobium ciceri LMS-1 (pRKACC) was tested for its plant growth promotion abilities on two chickpea cultivars (ELMO and CHK3226) growing in nonsterilized soil that displayed biotic and abiotic constraints to plant growth. When compared to its wild-type form, the M. ciceri LMS-1 (pRKACC) strain showed an increased nodulation performance of c. 125 and 180% and increased nodule weight of c. 45 and 147% in chickpea cultivars ELMO and CHK3226, respectively. Mesorhizobium ciceri LMS-1 (pRKACC) was also able to augment the total biomass of both chickpea plant cultivars by c. 45% and to reduce chickpea root rot disease susceptibility. Conclusions: The results obtained indicate that the production of ACC deaminase under free living conditions by Mesorhizobium strains increases the nodulation, plant growth abilities and biocontrol potential of these strains. Significance and Impact of the Study: This is the first study regarding the use of a transformed rhizobial strain expressing an exogenous ACC deaminase in different plant cultivars growing in soil. Hence, obtaining Mesorhizobium strains with high ACC deaminase activity is a matter of extreme importance for the development of inoculants for field applications.The Society for Applied Microbiology2012-10-25T17:06:28Z2012-10-252012-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/5379http://hdl.handle.net/10174/5379engNascimento, F.,Brigido, C., Glick, B., Oliveira, S., Alho, L. (2012) Mesorhizobium ciceri LMS-1 expressing an exogenous 1-aminocyclopropane-1-carboxylate (ACC) deaminase increases its nodulation abilities and chickpea plant resistance to soil constraints. Letters in Applied Microbiology 55, 15–21.0266-8254fxnascimento@gmail.com>ccb@uevora.ptglick@sciborg.uwaterloo.caismo@uevora.ptluisalho@uevora.pt227Nascimento, FranciscoBrígido, ClarisseGlick, BernardOliveira, SolangeAlho, Luísinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:44:00Zoai:dspace.uevora.pt:10174/5379Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:00:21.308216Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Mesorhizobium ciceri LMS-1 expressing an exogenous 1-aminocyclopropane-1-carboxylate (ACC) deaminase increases its nodulation abilities and chickpea plant resistance to soil constraints
title Mesorhizobium ciceri LMS-1 expressing an exogenous 1-aminocyclopropane-1-carboxylate (ACC) deaminase increases its nodulation abilities and chickpea plant resistance to soil constraints
spellingShingle Mesorhizobium ciceri LMS-1 expressing an exogenous 1-aminocyclopropane-1-carboxylate (ACC) deaminase increases its nodulation abilities and chickpea plant resistance to soil constraints
Nascimento, Francisco
1-aminocyclopropane-1-carboxylate deaminase
acdS
chickpea
Mesorhizobium
root rot
soil
title_short Mesorhizobium ciceri LMS-1 expressing an exogenous 1-aminocyclopropane-1-carboxylate (ACC) deaminase increases its nodulation abilities and chickpea plant resistance to soil constraints
title_full Mesorhizobium ciceri LMS-1 expressing an exogenous 1-aminocyclopropane-1-carboxylate (ACC) deaminase increases its nodulation abilities and chickpea plant resistance to soil constraints
title_fullStr Mesorhizobium ciceri LMS-1 expressing an exogenous 1-aminocyclopropane-1-carboxylate (ACC) deaminase increases its nodulation abilities and chickpea plant resistance to soil constraints
title_full_unstemmed Mesorhizobium ciceri LMS-1 expressing an exogenous 1-aminocyclopropane-1-carboxylate (ACC) deaminase increases its nodulation abilities and chickpea plant resistance to soil constraints
title_sort Mesorhizobium ciceri LMS-1 expressing an exogenous 1-aminocyclopropane-1-carboxylate (ACC) deaminase increases its nodulation abilities and chickpea plant resistance to soil constraints
author Nascimento, Francisco
author_facet Nascimento, Francisco
Brígido, Clarisse
Glick, Bernard
Oliveira, Solange
Alho, Luís
author_role author
author2 Brígido, Clarisse
Glick, Bernard
Oliveira, Solange
Alho, Luís
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Nascimento, Francisco
Brígido, Clarisse
Glick, Bernard
Oliveira, Solange
Alho, Luís
dc.subject.por.fl_str_mv 1-aminocyclopropane-1-carboxylate deaminase
acdS
chickpea
Mesorhizobium
root rot
soil
topic 1-aminocyclopropane-1-carboxylate deaminase
acdS
chickpea
Mesorhizobium
root rot
soil
description Aims: Our goal was to understand the symbiotic behaviour of a Mesorhizobium strain expressing an exogenous 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which was used as an inoculant of chickpea (Cicer arietinum) plants growing in soil. Methods and Results: Mesorhizobium ciceri LMS-1 (pRKACC) was tested for its plant growth promotion abilities on two chickpea cultivars (ELMO and CHK3226) growing in nonsterilized soil that displayed biotic and abiotic constraints to plant growth. When compared to its wild-type form, the M. ciceri LMS-1 (pRKACC) strain showed an increased nodulation performance of c. 125 and 180% and increased nodule weight of c. 45 and 147% in chickpea cultivars ELMO and CHK3226, respectively. Mesorhizobium ciceri LMS-1 (pRKACC) was also able to augment the total biomass of both chickpea plant cultivars by c. 45% and to reduce chickpea root rot disease susceptibility. Conclusions: The results obtained indicate that the production of ACC deaminase under free living conditions by Mesorhizobium strains increases the nodulation, plant growth abilities and biocontrol potential of these strains. Significance and Impact of the Study: This is the first study regarding the use of a transformed rhizobial strain expressing an exogenous ACC deaminase in different plant cultivars growing in soil. Hence, obtaining Mesorhizobium strains with high ACC deaminase activity is a matter of extreme importance for the development of inoculants for field applications.
publishDate 2012
dc.date.none.fl_str_mv 2012-10-25T17:06:28Z
2012-10-25
2012-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/5379
http://hdl.handle.net/10174/5379
url http://hdl.handle.net/10174/5379
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Nascimento, F.,Brigido, C., Glick, B., Oliveira, S., Alho, L. (2012) Mesorhizobium ciceri LMS-1 expressing an exogenous 1-aminocyclopropane-1-carboxylate (ACC) deaminase increases its nodulation abilities and chickpea plant resistance to soil constraints. Letters in Applied Microbiology 55, 15–21.
0266-8254
fxnascimento@gmail.com>
ccb@uevora.pt
glick@sciborg.uwaterloo.ca
ismo@uevora.pt
luisalho@uevora.pt
227
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv The Society for Applied Microbiology
publisher.none.fl_str_mv The Society for Applied Microbiology
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136486056001536