Machine-Learning-Assisted Determination of the Global Zero-Temperature Phase Diagram of Materials

Detalhes bibliográficos
Autor(a) principal: Schmidt, Jonathan
Data de Publicação: 2023
Outros Autores: Hoffmann, Noah, Wang, Hai-Chen, Borlido, Pedro, Carriço, Pedro J. M. A., Cerqueira, Tiago F. T., Botti, Silvana, Marques, Miguel A. L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/107111
https://doi.org/10.1002/adma.202210788
Resumo: Crystal-graph attention neural networks have emerged recently as remarkable tools for the prediction of thermodynamic stability. The efficacy of their learning capabilities and their reliability is however subject to the quantity and quality of the data they are fed. Previous networks exhibit strong biases due to the inhomogeneity of the training data. Here a high-quality dataset is engineered to provide a better balance across chemical and crystal-symmetry space. Crystal-graph neural networks trained with this dataset show unprecedented generalization accuracy. Such networks are applied to perform machine-learning-assisted high-throughput searches of stable materials, spanning 1 billion candidates. In this way, the number of vertices of the global T = 0 K phase diagram is increased by 30% and find more than ≈150 000 compounds with a distance to the convex hull of stability of less than 50 meV atom-1 . The discovered materials are then accessed for applications, identifying compounds with extreme values of a few properties, such as superconductivity, superhardness, and giant gap-deformation potentials.
id RCAP_e25bedb24abde65e4c8fe7b333180662
oai_identifier_str oai:estudogeral.uc.pt:10316/107111
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Machine-Learning-Assisted Determination of the Global Zero-Temperature Phase Diagram of Materialshigh-throughput density functional theory calculationsmachine learning material sciencematerial discoverysuperconductivitysuperhard materialsCrystal-graph attention neural networks have emerged recently as remarkable tools for the prediction of thermodynamic stability. The efficacy of their learning capabilities and their reliability is however subject to the quantity and quality of the data they are fed. Previous networks exhibit strong biases due to the inhomogeneity of the training data. Here a high-quality dataset is engineered to provide a better balance across chemical and crystal-symmetry space. Crystal-graph neural networks trained with this dataset show unprecedented generalization accuracy. Such networks are applied to perform machine-learning-assisted high-throughput searches of stable materials, spanning 1 billion candidates. In this way, the number of vertices of the global T = 0 K phase diagram is increased by 30% and find more than ≈150 000 compounds with a distance to the convex hull of stability of less than 50 meV atom-1 . The discovered materials are then accessed for applications, identifying compounds with extreme values of a few properties, such as superconductivity, superhardness, and giant gap-deformation potentials.The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing computing time on the GCS Supercomputer SUPERMUC-NG at Leibniz Supercomputing Centre (www.lrz.de) under the project pn25co. T.F.T.C., P.J.M.A.C., and P.B. acknowledge financial support from FCT - Fundação para a Ciência e Tecnologia, Portugal (projects UIDB/04564/2020 and UIDP/04564/2020 and contract 2020.04225.CEECIND) and computational resources provided by the Laboratory for Advanced Computing at University of Coimbra.Open access funding enabled and organized by Projekt DEALWiley2023-03-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/107111http://hdl.handle.net/10316/107111https://doi.org/10.1002/adma.202210788eng0935-96481521-4095369490071521-4095https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202210788Schmidt, JonathanHoffmann, NoahWang, Hai-ChenBorlido, PedroCarriço, Pedro J. M. A.Cerqueira, Tiago F. T.Botti, SilvanaMarques, Miguel A. L.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-12T13:07:08Zoai:estudogeral.uc.pt:10316/107111Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:23:28.716218Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Machine-Learning-Assisted Determination of the Global Zero-Temperature Phase Diagram of Materials
title Machine-Learning-Assisted Determination of the Global Zero-Temperature Phase Diagram of Materials
spellingShingle Machine-Learning-Assisted Determination of the Global Zero-Temperature Phase Diagram of Materials
Schmidt, Jonathan
high-throughput density functional theory calculations
machine learning material science
material discovery
superconductivity
superhard materials
title_short Machine-Learning-Assisted Determination of the Global Zero-Temperature Phase Diagram of Materials
title_full Machine-Learning-Assisted Determination of the Global Zero-Temperature Phase Diagram of Materials
title_fullStr Machine-Learning-Assisted Determination of the Global Zero-Temperature Phase Diagram of Materials
title_full_unstemmed Machine-Learning-Assisted Determination of the Global Zero-Temperature Phase Diagram of Materials
title_sort Machine-Learning-Assisted Determination of the Global Zero-Temperature Phase Diagram of Materials
author Schmidt, Jonathan
author_facet Schmidt, Jonathan
Hoffmann, Noah
Wang, Hai-Chen
Borlido, Pedro
Carriço, Pedro J. M. A.
Cerqueira, Tiago F. T.
Botti, Silvana
Marques, Miguel A. L.
author_role author
author2 Hoffmann, Noah
Wang, Hai-Chen
Borlido, Pedro
Carriço, Pedro J. M. A.
Cerqueira, Tiago F. T.
Botti, Silvana
Marques, Miguel A. L.
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Schmidt, Jonathan
Hoffmann, Noah
Wang, Hai-Chen
Borlido, Pedro
Carriço, Pedro J. M. A.
Cerqueira, Tiago F. T.
Botti, Silvana
Marques, Miguel A. L.
dc.subject.por.fl_str_mv high-throughput density functional theory calculations
machine learning material science
material discovery
superconductivity
superhard materials
topic high-throughput density functional theory calculations
machine learning material science
material discovery
superconductivity
superhard materials
description Crystal-graph attention neural networks have emerged recently as remarkable tools for the prediction of thermodynamic stability. The efficacy of their learning capabilities and their reliability is however subject to the quantity and quality of the data they are fed. Previous networks exhibit strong biases due to the inhomogeneity of the training data. Here a high-quality dataset is engineered to provide a better balance across chemical and crystal-symmetry space. Crystal-graph neural networks trained with this dataset show unprecedented generalization accuracy. Such networks are applied to perform machine-learning-assisted high-throughput searches of stable materials, spanning 1 billion candidates. In this way, the number of vertices of the global T = 0 K phase diagram is increased by 30% and find more than ≈150 000 compounds with a distance to the convex hull of stability of less than 50 meV atom-1 . The discovered materials are then accessed for applications, identifying compounds with extreme values of a few properties, such as superconductivity, superhardness, and giant gap-deformation potentials.
publishDate 2023
dc.date.none.fl_str_mv 2023-03-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/107111
http://hdl.handle.net/10316/107111
https://doi.org/10.1002/adma.202210788
url http://hdl.handle.net/10316/107111
https://doi.org/10.1002/adma.202210788
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0935-9648
1521-4095
36949007
1521-4095
https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202210788
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134121630367744