Supraconvergent cell-centered scheme for two dimensional elliptic problems

Detalhes bibliográficos
Autor(a) principal: Barbeiro, S.
Data de Publicação: 2009
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/4597
https://doi.org/10.1016/j.apnum.2007.11.021
Resumo: In this paper we study the convergence properties of a cell-centered finite difference scheme for second order elliptic equations with variable coefficients subject to Dirichlet boundary conditions. We prove that the finite difference scheme on nonuniform meshes although not even being consistent are nevertheless second order convergent. More precisely, second order convergence with respect to a discrete version of L2([Omega])-norm is shown provided that the exact solution is in H4([Omega]). Estimates for the difference between the pointwise restriction of the exact solution on the discretization nodes and the finite difference solution are proved. The convergence is studied with the aid of an appropriate negative norm. A numerical example support the convergence result.
id RCAP_e2bec4cf5ea01369d449c8db0c1b0154
oai_identifier_str oai:estudogeral.uc.pt:10316/4597
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Supraconvergent cell-centered scheme for two dimensional elliptic problemsCell-centered schemeNonuniform meshSupraconvergenceIn this paper we study the convergence properties of a cell-centered finite difference scheme for second order elliptic equations with variable coefficients subject to Dirichlet boundary conditions. We prove that the finite difference scheme on nonuniform meshes although not even being consistent are nevertheless second order convergent. More precisely, second order convergence with respect to a discrete version of L2([Omega])-norm is shown provided that the exact solution is in H4([Omega]). Estimates for the difference between the pointwise restriction of the exact solution on the discretization nodes and the finite difference solution are proved. The convergence is studied with the aid of an appropriate negative norm. A numerical example support the convergence result.http://www.sciencedirect.com/science/article/B6TYD-4R9JTP2-1/1/654005527dd3dc2ebf6cca77c32cc92f2009info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttp://hdl.handle.net/10316/4597http://hdl.handle.net/10316/4597https://doi.org/10.1016/j.apnum.2007.11.021engApplied Numerical Mathematics. 59 (2009) 56–72Barbeiro, S.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-11-06T16:48:46Zoai:estudogeral.uc.pt:10316/4597Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:47.280164Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Supraconvergent cell-centered scheme for two dimensional elliptic problems
title Supraconvergent cell-centered scheme for two dimensional elliptic problems
spellingShingle Supraconvergent cell-centered scheme for two dimensional elliptic problems
Barbeiro, S.
Cell-centered scheme
Nonuniform mesh
Supraconvergence
title_short Supraconvergent cell-centered scheme for two dimensional elliptic problems
title_full Supraconvergent cell-centered scheme for two dimensional elliptic problems
title_fullStr Supraconvergent cell-centered scheme for two dimensional elliptic problems
title_full_unstemmed Supraconvergent cell-centered scheme for two dimensional elliptic problems
title_sort Supraconvergent cell-centered scheme for two dimensional elliptic problems
author Barbeiro, S.
author_facet Barbeiro, S.
author_role author
dc.contributor.author.fl_str_mv Barbeiro, S.
dc.subject.por.fl_str_mv Cell-centered scheme
Nonuniform mesh
Supraconvergence
topic Cell-centered scheme
Nonuniform mesh
Supraconvergence
description In this paper we study the convergence properties of a cell-centered finite difference scheme for second order elliptic equations with variable coefficients subject to Dirichlet boundary conditions. We prove that the finite difference scheme on nonuniform meshes although not even being consistent are nevertheless second order convergent. More precisely, second order convergence with respect to a discrete version of L2([Omega])-norm is shown provided that the exact solution is in H4([Omega]). Estimates for the difference between the pointwise restriction of the exact solution on the discretization nodes and the finite difference solution are proved. The convergence is studied with the aid of an appropriate negative norm. A numerical example support the convergence result.
publishDate 2009
dc.date.none.fl_str_mv 2009
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/4597
http://hdl.handle.net/10316/4597
https://doi.org/10.1016/j.apnum.2007.11.021
url http://hdl.handle.net/10316/4597
https://doi.org/10.1016/j.apnum.2007.11.021
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Applied Numerical Mathematics. 59 (2009) 56–72
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv aplication/PDF
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133898401120256