Supraconvergent cell-centered scheme for two dimensional elliptic problems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/4597 https://doi.org/10.1016/j.apnum.2007.11.021 |
Resumo: | In this paper we study the convergence properties of a cell-centered finite difference scheme for second order elliptic equations with variable coefficients subject to Dirichlet boundary conditions. We prove that the finite difference scheme on nonuniform meshes although not even being consistent are nevertheless second order convergent. More precisely, second order convergence with respect to a discrete version of L2([Omega])-norm is shown provided that the exact solution is in H4([Omega]). Estimates for the difference between the pointwise restriction of the exact solution on the discretization nodes and the finite difference solution are proved. The convergence is studied with the aid of an appropriate negative norm. A numerical example support the convergence result. |
id |
RCAP_e2bec4cf5ea01369d449c8db0c1b0154 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/4597 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Supraconvergent cell-centered scheme for two dimensional elliptic problemsCell-centered schemeNonuniform meshSupraconvergenceIn this paper we study the convergence properties of a cell-centered finite difference scheme for second order elliptic equations with variable coefficients subject to Dirichlet boundary conditions. We prove that the finite difference scheme on nonuniform meshes although not even being consistent are nevertheless second order convergent. More precisely, second order convergence with respect to a discrete version of L2([Omega])-norm is shown provided that the exact solution is in H4([Omega]). Estimates for the difference between the pointwise restriction of the exact solution on the discretization nodes and the finite difference solution are proved. The convergence is studied with the aid of an appropriate negative norm. A numerical example support the convergence result.http://www.sciencedirect.com/science/article/B6TYD-4R9JTP2-1/1/654005527dd3dc2ebf6cca77c32cc92f2009info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttp://hdl.handle.net/10316/4597http://hdl.handle.net/10316/4597https://doi.org/10.1016/j.apnum.2007.11.021engApplied Numerical Mathematics. 59 (2009) 56–72Barbeiro, S.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-11-06T16:48:46Zoai:estudogeral.uc.pt:10316/4597Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:47.280164Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Supraconvergent cell-centered scheme for two dimensional elliptic problems |
title |
Supraconvergent cell-centered scheme for two dimensional elliptic problems |
spellingShingle |
Supraconvergent cell-centered scheme for two dimensional elliptic problems Barbeiro, S. Cell-centered scheme Nonuniform mesh Supraconvergence |
title_short |
Supraconvergent cell-centered scheme for two dimensional elliptic problems |
title_full |
Supraconvergent cell-centered scheme for two dimensional elliptic problems |
title_fullStr |
Supraconvergent cell-centered scheme for two dimensional elliptic problems |
title_full_unstemmed |
Supraconvergent cell-centered scheme for two dimensional elliptic problems |
title_sort |
Supraconvergent cell-centered scheme for two dimensional elliptic problems |
author |
Barbeiro, S. |
author_facet |
Barbeiro, S. |
author_role |
author |
dc.contributor.author.fl_str_mv |
Barbeiro, S. |
dc.subject.por.fl_str_mv |
Cell-centered scheme Nonuniform mesh Supraconvergence |
topic |
Cell-centered scheme Nonuniform mesh Supraconvergence |
description |
In this paper we study the convergence properties of a cell-centered finite difference scheme for second order elliptic equations with variable coefficients subject to Dirichlet boundary conditions. We prove that the finite difference scheme on nonuniform meshes although not even being consistent are nevertheless second order convergent. More precisely, second order convergence with respect to a discrete version of L2([Omega])-norm is shown provided that the exact solution is in H4([Omega]). Estimates for the difference between the pointwise restriction of the exact solution on the discretization nodes and the finite difference solution are proved. The convergence is studied with the aid of an appropriate negative norm. A numerical example support the convergence result. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/4597 http://hdl.handle.net/10316/4597 https://doi.org/10.1016/j.apnum.2007.11.021 |
url |
http://hdl.handle.net/10316/4597 https://doi.org/10.1016/j.apnum.2007.11.021 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Applied Numerical Mathematics. 59 (2009) 56–72 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
aplication/PDF |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133898401120256 |