Ensembles of jittered association rule classifiers

Detalhes bibliográficos
Autor(a) principal: Azevedo, Paulo J.
Data de Publicação: 2010
Outros Autores: Jorge, Alípio M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/33800
Resumo: The ensembling of classifiers tends to improve predictive accuracy. To obtain an ensemble with N classifiers, one typically needs to run N learning processes. In this paper we introduce and explore Model Jittering Ensembling, where one single model is perturbed in order to obtain variants that can be used as an ensemble. We use as base classifiers sets of classification association rules. The two methods of jittering ensembling we propose are Iterative Reordering Ensembling (IRE) and Post Bagging (PB). Both methods start by learning one rule set over a single run, and then produce multiple rule sets without relearning. Empirical results on 36 data sets are positive and show that both strategies tend to reduce error with respect to the single model association rule classifier. A bias–variance analysis reveals that while both IRE and PB are able to reduce the variance component of the error, IRE is particularly effective in reducing the bias component. We show that Model Jittering Ensembling can represent a very good speed-up w.r.t. multiple model learning ensembling. We also compare Model Jittering with various state of the art classifiers in terms of predictive accuracy and computational efficiency.
id RCAP_e2fc54545072e132e9a6ead922a81c4f
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/33800
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Ensembles of jittered association rule classifiersEnsemblesAssociative classificationModel jitteringScience & TechnologyThe ensembling of classifiers tends to improve predictive accuracy. To obtain an ensemble with N classifiers, one typically needs to run N learning processes. In this paper we introduce and explore Model Jittering Ensembling, where one single model is perturbed in order to obtain variants that can be used as an ensemble. We use as base classifiers sets of classification association rules. The two methods of jittering ensembling we propose are Iterative Reordering Ensembling (IRE) and Post Bagging (PB). Both methods start by learning one rule set over a single run, and then produce multiple rule sets without relearning. Empirical results on 36 data sets are positive and show that both strategies tend to reduce error with respect to the single model association rule classifier. A bias–variance analysis reveals that while both IRE and PB are able to reduce the variance component of the error, IRE is particularly effective in reducing the bias component. We show that Model Jittering Ensembling can represent a very good speed-up w.r.t. multiple model learning ensembling. We also compare Model Jittering with various state of the art classifiers in terms of predictive accuracy and computational efficiency.This work was partially supported by FCT project Rank! (PTDC/EIA/81178/2006) and by AdI project Palco3.0 financed by QREN and Fundo Europeu de Desenvolvimento Regional (FEDER), and also supported by Fundacao Ciencia e Tecnologia, FEDER e Programa de Financiamento Plurianual de Unidades de I & D. Thanks are due to William Cohen for kindly providing the executable code for the SLIPPER implementation. Our gratitude goes also to our anonymous reviewers who have helped to significantly improve this paper by sharing their knowledge and their informed criticism with the authors.SpringerUniversidade do MinhoAzevedo, Paulo J.Jorge, Alípio M.20102010-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/33800eng1384-581010.1007/s10618-010-0173-yinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:30:21Zoai:repositorium.sdum.uminho.pt:1822/33800Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:25:29.935501Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Ensembles of jittered association rule classifiers
title Ensembles of jittered association rule classifiers
spellingShingle Ensembles of jittered association rule classifiers
Azevedo, Paulo J.
Ensembles
Associative classification
Model jittering
Science & Technology
title_short Ensembles of jittered association rule classifiers
title_full Ensembles of jittered association rule classifiers
title_fullStr Ensembles of jittered association rule classifiers
title_full_unstemmed Ensembles of jittered association rule classifiers
title_sort Ensembles of jittered association rule classifiers
author Azevedo, Paulo J.
author_facet Azevedo, Paulo J.
Jorge, Alípio M.
author_role author
author2 Jorge, Alípio M.
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Azevedo, Paulo J.
Jorge, Alípio M.
dc.subject.por.fl_str_mv Ensembles
Associative classification
Model jittering
Science & Technology
topic Ensembles
Associative classification
Model jittering
Science & Technology
description The ensembling of classifiers tends to improve predictive accuracy. To obtain an ensemble with N classifiers, one typically needs to run N learning processes. In this paper we introduce and explore Model Jittering Ensembling, where one single model is perturbed in order to obtain variants that can be used as an ensemble. We use as base classifiers sets of classification association rules. The two methods of jittering ensembling we propose are Iterative Reordering Ensembling (IRE) and Post Bagging (PB). Both methods start by learning one rule set over a single run, and then produce multiple rule sets without relearning. Empirical results on 36 data sets are positive and show that both strategies tend to reduce error with respect to the single model association rule classifier. A bias–variance analysis reveals that while both IRE and PB are able to reduce the variance component of the error, IRE is particularly effective in reducing the bias component. We show that Model Jittering Ensembling can represent a very good speed-up w.r.t. multiple model learning ensembling. We also compare Model Jittering with various state of the art classifiers in terms of predictive accuracy and computational efficiency.
publishDate 2010
dc.date.none.fl_str_mv 2010
2010-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/33800
url http://hdl.handle.net/1822/33800
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1384-5810
10.1007/s10618-010-0173-y
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132739655434240