Ensembles of jittered association rule classifiers

Detalhes bibliográficos
Autor(a) principal: Paulo Jorge Azevedo
Data de Publicação: 2010
Outros Autores: Alípio Jorge
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://repositorio.inesctec.pt/handle/123456789/7018
Resumo: The ensembling of classifiers tends to improve predictive accuracy. To obtain an ensemble with N classifiers, one typically needs to run N learning processes. In this paper we introduce and explore Model Jittering Ensembling, where one single model is perturbed in order to obtain variants that can be used as an ensemble. We use as base classifiers sets of classification association rules. The two methods of jittering ensembling we propose are Iterative Reordering Ensembling (IRE) and Post Bagging (PB). Both methods start by learning one rule set over a single run, and then produce multiple rule sets without relearning. Empirical results on 36 data sets are positive and show that both strategies tend to reduce error with respect to the single model association rule classifier. A bias-variance analysis reveals that while both IRE and PB are able to reduce the variance component of the error, IRE is particularly effective in reducing the bias component.
id RCAP_e9ddfec9334153515bb236311690de6a
oai_identifier_str oai:repositorio.inesctec.pt:123456789/7018
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Ensembles of jittered association rule classifiersThe ensembling of classifiers tends to improve predictive accuracy. To obtain an ensemble with N classifiers, one typically needs to run N learning processes. In this paper we introduce and explore Model Jittering Ensembling, where one single model is perturbed in order to obtain variants that can be used as an ensemble. We use as base classifiers sets of classification association rules. The two methods of jittering ensembling we propose are Iterative Reordering Ensembling (IRE) and Post Bagging (PB). Both methods start by learning one rule set over a single run, and then produce multiple rule sets without relearning. Empirical results on 36 data sets are positive and show that both strategies tend to reduce error with respect to the single model association rule classifier. A bias-variance analysis reveals that while both IRE and PB are able to reduce the variance component of the error, IRE is particularly effective in reducing the bias component.2018-01-18T23:57:32Z2010-01-01T00:00:00Z2010info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/7018engPaulo Jorge AzevedoAlípio Jorgeinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:20:21Zoai:repositorio.inesctec.pt:123456789/7018Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:53:00.228888Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Ensembles of jittered association rule classifiers
title Ensembles of jittered association rule classifiers
spellingShingle Ensembles of jittered association rule classifiers
Paulo Jorge Azevedo
title_short Ensembles of jittered association rule classifiers
title_full Ensembles of jittered association rule classifiers
title_fullStr Ensembles of jittered association rule classifiers
title_full_unstemmed Ensembles of jittered association rule classifiers
title_sort Ensembles of jittered association rule classifiers
author Paulo Jorge Azevedo
author_facet Paulo Jorge Azevedo
Alípio Jorge
author_role author
author2 Alípio Jorge
author2_role author
dc.contributor.author.fl_str_mv Paulo Jorge Azevedo
Alípio Jorge
description The ensembling of classifiers tends to improve predictive accuracy. To obtain an ensemble with N classifiers, one typically needs to run N learning processes. In this paper we introduce and explore Model Jittering Ensembling, where one single model is perturbed in order to obtain variants that can be used as an ensemble. We use as base classifiers sets of classification association rules. The two methods of jittering ensembling we propose are Iterative Reordering Ensembling (IRE) and Post Bagging (PB). Both methods start by learning one rule set over a single run, and then produce multiple rule sets without relearning. Empirical results on 36 data sets are positive and show that both strategies tend to reduce error with respect to the single model association rule classifier. A bias-variance analysis reveals that while both IRE and PB are able to reduce the variance component of the error, IRE is particularly effective in reducing the bias component.
publishDate 2010
dc.date.none.fl_str_mv 2010-01-01T00:00:00Z
2010
2018-01-18T23:57:32Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.inesctec.pt/handle/123456789/7018
url http://repositorio.inesctec.pt/handle/123456789/7018
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131605443280896