Violations of the Kerr and Reissner-Nordström bounds: horizon versus asymptotic quantities

Detalhes bibliográficos
Autor(a) principal: Delgado, Jorge F. M.
Data de Publicação: 2016
Outros Autores: Herdeiro, Carlos A. R., Radu, Eugen
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/16974
Resumo: A central feature of the most elementary rotating black hole (BH) solution in general relativity is the Kerr bound which, for vacuum Kerr BHs, can be expressed either in terms of the Arnowitt-Deser-Misner (ADM) or horizon "charges." However, this bound is not a fundamental property of general relativity and stationary, asymptotically flat, and regular (on and outside an event horizon) BHs are known to violate the Kerr bound, in terms of both their ADM and horizon quantities. Examples include the recently discovered Kerr BHs with scalar [C. A. R. Herdeiro and E. Radu, Phys. Rev. Lett. 112, 221101 (2014)] or Proca hair [C. Herdeiro, E. Radu, and H. Runarsson, arXiv: 1603.02687]. Here, we point out the fact that the Kerr bound in terms of horizon quantities is also violated by well-known rotating and charged solutions which are known in closed form, such as the Kerr-Newman and Kerr-Sen BHs. Moreover, for the former we observe that the Reissner-Nordstrom (RN) bound is also violated in terms of horizon quantities, even in the static (i.e., RN) limit. By contrast, for the latter the existence of charged matter outside the horizon allows for a curious invariance of the charge-to-mass ratio between the ADM and horizon quantities. Regardless of the Kerr bound violation, we show that in all cases the event horizon linear velocity [C. A. R. Herdeiro and E. Radu, Int. J. Mod. Phys. D 24, 1544022 (2015)] never exceeds the speed of light. Finally, we suggest a new type of informative parametrization for BH spacetimes where part of the asymptotic charge is supported outside the horizon.
id RCAP_e4c2fd2954aed6431cb4b0f044f078ec
oai_identifier_str oai:ria.ua.pt:10773/16974
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Violations of the Kerr and Reissner-Nordström bounds: horizon versus asymptotic quantitiesA central feature of the most elementary rotating black hole (BH) solution in general relativity is the Kerr bound which, for vacuum Kerr BHs, can be expressed either in terms of the Arnowitt-Deser-Misner (ADM) or horizon "charges." However, this bound is not a fundamental property of general relativity and stationary, asymptotically flat, and regular (on and outside an event horizon) BHs are known to violate the Kerr bound, in terms of both their ADM and horizon quantities. Examples include the recently discovered Kerr BHs with scalar [C. A. R. Herdeiro and E. Radu, Phys. Rev. Lett. 112, 221101 (2014)] or Proca hair [C. Herdeiro, E. Radu, and H. Runarsson, arXiv: 1603.02687]. Here, we point out the fact that the Kerr bound in terms of horizon quantities is also violated by well-known rotating and charged solutions which are known in closed form, such as the Kerr-Newman and Kerr-Sen BHs. Moreover, for the former we observe that the Reissner-Nordstrom (RN) bound is also violated in terms of horizon quantities, even in the static (i.e., RN) limit. By contrast, for the latter the existence of charged matter outside the horizon allows for a curious invariance of the charge-to-mass ratio between the ADM and horizon quantities. Regardless of the Kerr bound violation, we show that in all cases the event horizon linear velocity [C. A. R. Herdeiro and E. Radu, Int. J. Mod. Phys. D 24, 1544022 (2015)] never exceeds the speed of light. Finally, we suggest a new type of informative parametrization for BH spacetimes where part of the asymptotic charge is supported outside the horizon.American Physical Society2017-03-06T20:38:54Z2016-07-01T00:00:00Z2016-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/16974eng2470-001010.1103/PhysRevD.94.024006Delgado, Jorge F. M.Herdeiro, Carlos A. R.Radu, Eugeninfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:31:04Zoai:ria.ua.pt:10773/16974Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:51:43.786692Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Violations of the Kerr and Reissner-Nordström bounds: horizon versus asymptotic quantities
title Violations of the Kerr and Reissner-Nordström bounds: horizon versus asymptotic quantities
spellingShingle Violations of the Kerr and Reissner-Nordström bounds: horizon versus asymptotic quantities
Delgado, Jorge F. M.
title_short Violations of the Kerr and Reissner-Nordström bounds: horizon versus asymptotic quantities
title_full Violations of the Kerr and Reissner-Nordström bounds: horizon versus asymptotic quantities
title_fullStr Violations of the Kerr and Reissner-Nordström bounds: horizon versus asymptotic quantities
title_full_unstemmed Violations of the Kerr and Reissner-Nordström bounds: horizon versus asymptotic quantities
title_sort Violations of the Kerr and Reissner-Nordström bounds: horizon versus asymptotic quantities
author Delgado, Jorge F. M.
author_facet Delgado, Jorge F. M.
Herdeiro, Carlos A. R.
Radu, Eugen
author_role author
author2 Herdeiro, Carlos A. R.
Radu, Eugen
author2_role author
author
dc.contributor.author.fl_str_mv Delgado, Jorge F. M.
Herdeiro, Carlos A. R.
Radu, Eugen
description A central feature of the most elementary rotating black hole (BH) solution in general relativity is the Kerr bound which, for vacuum Kerr BHs, can be expressed either in terms of the Arnowitt-Deser-Misner (ADM) or horizon "charges." However, this bound is not a fundamental property of general relativity and stationary, asymptotically flat, and regular (on and outside an event horizon) BHs are known to violate the Kerr bound, in terms of both their ADM and horizon quantities. Examples include the recently discovered Kerr BHs with scalar [C. A. R. Herdeiro and E. Radu, Phys. Rev. Lett. 112, 221101 (2014)] or Proca hair [C. Herdeiro, E. Radu, and H. Runarsson, arXiv: 1603.02687]. Here, we point out the fact that the Kerr bound in terms of horizon quantities is also violated by well-known rotating and charged solutions which are known in closed form, such as the Kerr-Newman and Kerr-Sen BHs. Moreover, for the former we observe that the Reissner-Nordstrom (RN) bound is also violated in terms of horizon quantities, even in the static (i.e., RN) limit. By contrast, for the latter the existence of charged matter outside the horizon allows for a curious invariance of the charge-to-mass ratio between the ADM and horizon quantities. Regardless of the Kerr bound violation, we show that in all cases the event horizon linear velocity [C. A. R. Herdeiro and E. Radu, Int. J. Mod. Phys. D 24, 1544022 (2015)] never exceeds the speed of light. Finally, we suggest a new type of informative parametrization for BH spacetimes where part of the asymptotic charge is supported outside the horizon.
publishDate 2016
dc.date.none.fl_str_mv 2016-07-01T00:00:00Z
2016-07
2017-03-06T20:38:54Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/16974
url http://hdl.handle.net/10773/16974
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2470-0010
10.1103/PhysRevD.94.024006
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137566804410368