Classification of operator’s workload based on physiological response

Detalhes bibliográficos
Autor(a) principal: Mendonça, Beatriz Afonso
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/153929
Resumo: People spend most of their lives at work, during which time they are exposed to mechanical and environmental conditions that can harm their health. This risk can occur in an hour- long or over long periods, even when performed at a light to moderate intensity due to cumulative fatigue. Several measures have been proposed in order to prevent or reduce fatigue-inducing repetitive work. However, these measures are essentially subjective or only measure fatigue locally. Wearables are an attractive solution to measure work-related fatigue globally and at any time. The purpose of this study is to quantify biosignals information for the determination of fatigue while performing repetitive work. Electrocardiogram (ECG), electromyography (EMG), respiratory inductance plethysmography (RIP) and Accelerometer (ACC) signals were collected from 25 healthy participants. The participants were instructed to perform a repetitive task after induced fatigue. Their biosignals were processed, and different families of features were extracted. These features were used to fit a classifier in order to evaluate fatigue. Self-Similarity Matrix (SSM) was used to select and segment the data in Baseline and Fatigue. Autocorrelation of inertial measures, respiratory synchrony, and the root mean square of the cardiovascular load features achieved 88% of accuracy. It was possible to verify that the ACC’s features lead to the best classification results, followed by the RIP, EMG and finally the ECG’s features. Multimodal data allows global classification of when a person is working after expe- riencing fatigue. Motor information contributes significantly to this classification due to compensations that occur while performing the repetitive task. More studies should be done to develop an index characterising the fatigue state.
id RCAP_e5929106678887507cc45bf72bd0ed42
oai_identifier_str oai:run.unl.pt:10362/153929
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Classification of operator’s workload based on physiological responseWorkloadFatigueMachine LearningOperatorOccupational RisksIndustry 4.0Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e TecnologiasPeople spend most of their lives at work, during which time they are exposed to mechanical and environmental conditions that can harm their health. This risk can occur in an hour- long or over long periods, even when performed at a light to moderate intensity due to cumulative fatigue. Several measures have been proposed in order to prevent or reduce fatigue-inducing repetitive work. However, these measures are essentially subjective or only measure fatigue locally. Wearables are an attractive solution to measure work-related fatigue globally and at any time. The purpose of this study is to quantify biosignals information for the determination of fatigue while performing repetitive work. Electrocardiogram (ECG), electromyography (EMG), respiratory inductance plethysmography (RIP) and Accelerometer (ACC) signals were collected from 25 healthy participants. The participants were instructed to perform a repetitive task after induced fatigue. Their biosignals were processed, and different families of features were extracted. These features were used to fit a classifier in order to evaluate fatigue. Self-Similarity Matrix (SSM) was used to select and segment the data in Baseline and Fatigue. Autocorrelation of inertial measures, respiratory synchrony, and the root mean square of the cardiovascular load features achieved 88% of accuracy. It was possible to verify that the ACC’s features lead to the best classification results, followed by the RIP, EMG and finally the ECG’s features. Multimodal data allows global classification of when a person is working after expe- riencing fatigue. Motor information contributes significantly to this classification due to compensations that occur while performing the repetitive task. More studies should be done to develop an index characterising the fatigue state.As pessoas passam a maior parte da sua vida a trabalhar. A exposição a condições mecânicas e ambientais no trabalho pode ser prejudicial à sua saúde. Este risco pode ocorrer devido à fadiga cumulativa. Lesões podem surgir tanto em curtos como em longos períodos, mesmo quando a tarefa tem uma intensidade leve a moderada. Várias medidas foram propostas para prevenir ou reduzir o trabalho repetitivo que induz fadiga, no entanto, estas medidas são essencialmente subjetivas ou apenas medem a fadiga localmente. Os wearables são uma solução interessante para medir a fadiga relacionada ao trabalho a nível global e em qualquer momento. O objetivo deste estudo foi quantificar informações de biosinais para a determinação da fadiga durante a realização de trabalhos repetitivos. Os sinais de eletrocardiograma (ECG), eletromiografia (EMG), pletismografia de indutância respiratória (RIP) e acelerómetro (ACC) foram recolhidos de 25 participantes saudáveis. Os participantes realizaram uma tarefa repetitiva onde fadiga foi provocada. Os biosinais foram processados, e diferentes famílias de métricas foram extraídas. Estas métricas foram usadas para classificar a fadiga. Recorreu-se a Matrizes de Auto-Similaridade (SSM) para selecionar e segmentar os dados em fadiga e não fadiga. A autocorrelação das medidas inerciais, a sincronia respiratória e o quadrado médio da raiz da carga cardiovascular alcançaram 88% de precisão. Foi possível verificar que as features do ACC tiveram os melhores resultados de classificação, seguindo-se do RIP, EMG e, por último, de ECG. Os dados multimodais permitiram a classificação global de quando uma pessoa está a trabalhar, após sentir fadiga. A informação motora contribui, significativamente, para esta classificação devido às compensações que ocorrem durante a realização da tarefa repetitiva. Futuro trabalho deve ser feito com fim a determinar um índice que possa caracterizar o estado de fadiga.Gamboa, HugoSilva, LuísRUNMendonça, Beatriz Afonso2023-06-15T10:09:44Z2022-122022-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/153929enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:36:23Zoai:run.unl.pt:10362/153929Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:55:25.715247Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Classification of operator’s workload based on physiological response
title Classification of operator’s workload based on physiological response
spellingShingle Classification of operator’s workload based on physiological response
Mendonça, Beatriz Afonso
Workload
Fatigue
Machine Learning
Operator
Occupational Risks
Industry 4.0
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
title_short Classification of operator’s workload based on physiological response
title_full Classification of operator’s workload based on physiological response
title_fullStr Classification of operator’s workload based on physiological response
title_full_unstemmed Classification of operator’s workload based on physiological response
title_sort Classification of operator’s workload based on physiological response
author Mendonça, Beatriz Afonso
author_facet Mendonça, Beatriz Afonso
author_role author
dc.contributor.none.fl_str_mv Gamboa, Hugo
Silva, Luís
RUN
dc.contributor.author.fl_str_mv Mendonça, Beatriz Afonso
dc.subject.por.fl_str_mv Workload
Fatigue
Machine Learning
Operator
Occupational Risks
Industry 4.0
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
topic Workload
Fatigue
Machine Learning
Operator
Occupational Risks
Industry 4.0
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
description People spend most of their lives at work, during which time they are exposed to mechanical and environmental conditions that can harm their health. This risk can occur in an hour- long or over long periods, even when performed at a light to moderate intensity due to cumulative fatigue. Several measures have been proposed in order to prevent or reduce fatigue-inducing repetitive work. However, these measures are essentially subjective or only measure fatigue locally. Wearables are an attractive solution to measure work-related fatigue globally and at any time. The purpose of this study is to quantify biosignals information for the determination of fatigue while performing repetitive work. Electrocardiogram (ECG), electromyography (EMG), respiratory inductance plethysmography (RIP) and Accelerometer (ACC) signals were collected from 25 healthy participants. The participants were instructed to perform a repetitive task after induced fatigue. Their biosignals were processed, and different families of features were extracted. These features were used to fit a classifier in order to evaluate fatigue. Self-Similarity Matrix (SSM) was used to select and segment the data in Baseline and Fatigue. Autocorrelation of inertial measures, respiratory synchrony, and the root mean square of the cardiovascular load features achieved 88% of accuracy. It was possible to verify that the ACC’s features lead to the best classification results, followed by the RIP, EMG and finally the ECG’s features. Multimodal data allows global classification of when a person is working after expe- riencing fatigue. Motor information contributes significantly to this classification due to compensations that occur while performing the repetitive task. More studies should be done to develop an index characterising the fatigue state.
publishDate 2022
dc.date.none.fl_str_mv 2022-12
2022-12-01T00:00:00Z
2023-06-15T10:09:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/153929
url http://hdl.handle.net/10362/153929
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138141476487168