Offline Bayesian Identification of Jump Markov Nonlinear Systems

Detalhes bibliográficos
Autor(a) principal: Barão, Miguel
Data de Publicação: 2011
Outros Autores: Marques, Jorge S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/4622
https://doi.org/10.3182/20110828-6-IT-1002.01974
Resumo: This paper presents a framework for the offline identification of nonlinear switched systems with unknown model structure. Given a set of sampled trajectories, and under the assumption that they were generated by switching among a number of models, we estimate a set of vector fields and a stochastic switching mechanism that best describes the observed data. The switching mechanism is described by a position dependent hidden Markov model that provides the probabilities of the next active model given the current active model and the state vector. The vector fields and the stochastic matrix is obtained by interpolating a set of nodes distributed over a relevant region in the state space. The work follows a Bayesian formulation where the EM-algorithm is used for optimization.
id RCAP_ea96701ddcdd3cbf1711dc8ca90f3ba7
oai_identifier_str oai:dspace.uevora.pt:10174/4622
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Offline Bayesian Identification of Jump Markov Nonlinear SystemsBayesian estimationNonlinear systemsJump MarkovThis paper presents a framework for the offline identification of nonlinear switched systems with unknown model structure. Given a set of sampled trajectories, and under the assumption that they were generated by switching among a number of models, we estimate a set of vector fields and a stochastic switching mechanism that best describes the observed data. The switching mechanism is described by a position dependent hidden Markov model that provides the probabilities of the next active model given the current active model and the state vector. The vector fields and the stochastic matrix is obtained by interpolating a set of nodes distributed over a relevant region in the state space. The work follows a Bayesian formulation where the EM-algorithm is used for optimization.2012-01-30T18:11:32Z2012-01-302011-08-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/4622http://hdl.handle.net/10174/4622https://doi.org/10.3182/20110828-6-IT-1002.01974engM. Barão, J. S. Marques, "Offline Bayesian Identification of Jump Markov Nonlinear Systems", Proceedings of the 18th IFAC World Congress, Milan, 2011.mjsb@uevora.ptnd281Barão, MiguelMarques, Jorge S.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:41:49Zoai:dspace.uevora.pt:10174/4622Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:59:26.678390Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Offline Bayesian Identification of Jump Markov Nonlinear Systems
title Offline Bayesian Identification of Jump Markov Nonlinear Systems
spellingShingle Offline Bayesian Identification of Jump Markov Nonlinear Systems
Barão, Miguel
Bayesian estimation
Nonlinear systems
Jump Markov
title_short Offline Bayesian Identification of Jump Markov Nonlinear Systems
title_full Offline Bayesian Identification of Jump Markov Nonlinear Systems
title_fullStr Offline Bayesian Identification of Jump Markov Nonlinear Systems
title_full_unstemmed Offline Bayesian Identification of Jump Markov Nonlinear Systems
title_sort Offline Bayesian Identification of Jump Markov Nonlinear Systems
author Barão, Miguel
author_facet Barão, Miguel
Marques, Jorge S.
author_role author
author2 Marques, Jorge S.
author2_role author
dc.contributor.author.fl_str_mv Barão, Miguel
Marques, Jorge S.
dc.subject.por.fl_str_mv Bayesian estimation
Nonlinear systems
Jump Markov
topic Bayesian estimation
Nonlinear systems
Jump Markov
description This paper presents a framework for the offline identification of nonlinear switched systems with unknown model structure. Given a set of sampled trajectories, and under the assumption that they were generated by switching among a number of models, we estimate a set of vector fields and a stochastic switching mechanism that best describes the observed data. The switching mechanism is described by a position dependent hidden Markov model that provides the probabilities of the next active model given the current active model and the state vector. The vector fields and the stochastic matrix is obtained by interpolating a set of nodes distributed over a relevant region in the state space. The work follows a Bayesian formulation where the EM-algorithm is used for optimization.
publishDate 2011
dc.date.none.fl_str_mv 2011-08-01T00:00:00Z
2012-01-30T18:11:32Z
2012-01-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/4622
http://hdl.handle.net/10174/4622
https://doi.org/10.3182/20110828-6-IT-1002.01974
url http://hdl.handle.net/10174/4622
https://doi.org/10.3182/20110828-6-IT-1002.01974
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv M. Barão, J. S. Marques, "Offline Bayesian Identification of Jump Markov Nonlinear Systems", Proceedings of the 18th IFAC World Congress, Milan, 2011.
mjsb@uevora.pt
nd
281
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136476897738752