Filtering for Nonlinear and Linear Markov Jump Systems

Detalhes bibliográficos
Autor(a) principal: Costa, Oswaldo Luiz do Valle
Data de Publicação: 2023
Outros Autores: Oliveira, André Marcorin de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNIFESP
Texto Completo: https://ieeexplore.ieee.org/document/10273597
https://hdl.handle.net/11600/70880
Resumo: In this paper we consider the finite horizon filtering problem of discrete-time Markov jump systems (MJS). In the first part we consider a MJS satisfying some general nonlinear conditions. It is obtained, for a fixed set of auxiliary constants, filter gains, based on a set of coupled Riccati like difference equations, that yield a minimum upper bound for the estimation error covariance matrix. When the nonlinear parameters are set to zero the MJS becomes a Markov jump linear system (MJLS) and, in the second part of the paper, it is shown that the obtained filter gains derived from a set of coupled Riccati like difference equations provide the optimal “prediction-correction” Markovian filter for the nominal MJLS (which reduces to the standard Kalman filter for the no jump case). The paper is concluded with some numerical examples © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
id UFSP_65ceeaef66b824cb14de9f87161ca12d
oai_identifier_str oai:repositorio.unifesp.br/:11600/70880
network_acronym_str UFSP
network_name_str Repositório Institucional da UNIFESP
repository_id_str 3465
spelling Filtering for Nonlinear and Linear Markov Jump SystemsNonlinear systemsDiscrete-timeMarkovian jump systems“prediction-correction” formulaFinite horizonRiccati equationsIn this paper we consider the finite horizon filtering problem of discrete-time Markov jump systems (MJS). In the first part we consider a MJS satisfying some general nonlinear conditions. It is obtained, for a fixed set of auxiliary constants, filter gains, based on a set of coupled Riccati like difference equations, that yield a minimum upper bound for the estimation error covariance matrix. When the nonlinear parameters are set to zero the MJS becomes a Markov jump linear system (MJLS) and, in the second part of the paper, it is shown that the obtained filter gains derived from a set of coupled Riccati like difference equations provide the optimal “prediction-correction” Markovian filter for the nominal MJLS (which reduces to the standard Kalman filter for the no jump case). The paper is concluded with some numerical examples © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)FAPESP 2021/13338-6FAPESP 2014/50851−0CNPq 304149/2019CNPq 465755/2014−3CAPES 88887.136349/2017-00Alessandro Astolfi, Zhan Shu, David Castanonhttp://lattes.cnpq.br/1864836114526818Costa, Oswaldo Luiz do ValleOliveira, André Marcorin de2024-03-20T18:06:59Z2024-03-20T18:06:59Z2023-10-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttps://ieeexplore.ieee.org/document/10273597O. L. V. Costa and A. M. de Oliveira, "Filtering for Nonlinear and Linear Markov Jump Systems," in IEEE Transactions on Automatic Control, doi: 10.1109/TAC.2023.3322379.10.1109/TAC.2023.33223791558-25230018-9286https://hdl.handle.net/11600/70880engIEEE Transactions on Automatic Controlinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESP2024-03-20T15:07:02Zoai:repositorio.unifesp.br/:11600/70880Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestbiblioteca.csp@unifesp.bropendoar:34652024-03-20T15:07:02Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false
dc.title.none.fl_str_mv Filtering for Nonlinear and Linear Markov Jump Systems
title Filtering for Nonlinear and Linear Markov Jump Systems
spellingShingle Filtering for Nonlinear and Linear Markov Jump Systems
Costa, Oswaldo Luiz do Valle
Nonlinear systems
Discrete-time
Markovian jump systems
“prediction-correction” formula
Finite horizon
Riccati equations
title_short Filtering for Nonlinear and Linear Markov Jump Systems
title_full Filtering for Nonlinear and Linear Markov Jump Systems
title_fullStr Filtering for Nonlinear and Linear Markov Jump Systems
title_full_unstemmed Filtering for Nonlinear and Linear Markov Jump Systems
title_sort Filtering for Nonlinear and Linear Markov Jump Systems
author Costa, Oswaldo Luiz do Valle
author_facet Costa, Oswaldo Luiz do Valle
Oliveira, André Marcorin de
author_role author
author2 Oliveira, André Marcorin de
author2_role author
dc.contributor.none.fl_str_mv http://lattes.cnpq.br/1864836114526818
dc.contributor.author.fl_str_mv Costa, Oswaldo Luiz do Valle
Oliveira, André Marcorin de
dc.subject.por.fl_str_mv Nonlinear systems
Discrete-time
Markovian jump systems
“prediction-correction” formula
Finite horizon
Riccati equations
topic Nonlinear systems
Discrete-time
Markovian jump systems
“prediction-correction” formula
Finite horizon
Riccati equations
description In this paper we consider the finite horizon filtering problem of discrete-time Markov jump systems (MJS). In the first part we consider a MJS satisfying some general nonlinear conditions. It is obtained, for a fixed set of auxiliary constants, filter gains, based on a set of coupled Riccati like difference equations, that yield a minimum upper bound for the estimation error covariance matrix. When the nonlinear parameters are set to zero the MJS becomes a Markov jump linear system (MJLS) and, in the second part of the paper, it is shown that the obtained filter gains derived from a set of coupled Riccati like difference equations provide the optimal “prediction-correction” Markovian filter for the nominal MJLS (which reduces to the standard Kalman filter for the no jump case). The paper is concluded with some numerical examples © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
publishDate 2023
dc.date.none.fl_str_mv 2023-10-06
2024-03-20T18:06:59Z
2024-03-20T18:06:59Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://ieeexplore.ieee.org/document/10273597
O. L. V. Costa and A. M. de Oliveira, "Filtering for Nonlinear and Linear Markov Jump Systems," in IEEE Transactions on Automatic Control, doi: 10.1109/TAC.2023.3322379.
10.1109/TAC.2023.3322379
1558-2523
0018-9286
https://hdl.handle.net/11600/70880
url https://ieeexplore.ieee.org/document/10273597
https://hdl.handle.net/11600/70880
identifier_str_mv O. L. V. Costa and A. M. de Oliveira, "Filtering for Nonlinear and Linear Markov Jump Systems," in IEEE Transactions on Automatic Control, doi: 10.1109/TAC.2023.3322379.
10.1109/TAC.2023.3322379
1558-2523
0018-9286
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv IEEE Transactions on Automatic Control
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Alessandro Astolfi, Zhan Shu, David Castanon
publisher.none.fl_str_mv Alessandro Astolfi, Zhan Shu, David Castanon
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFESP
instname:Universidade Federal de São Paulo (UNIFESP)
instacron:UNIFESP
instname_str Universidade Federal de São Paulo (UNIFESP)
instacron_str UNIFESP
institution UNIFESP
reponame_str Repositório Institucional da UNIFESP
collection Repositório Institucional da UNIFESP
repository.name.fl_str_mv Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)
repository.mail.fl_str_mv biblioteca.csp@unifesp.br
_version_ 1814268315763212288