Application of an income-based structural model to measure the probabilities of default of five european banks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.14/39245 |
Resumo: | This dissertation analyses whether a modified version of the EBIT-based structural model by (Goldstein, Ju, & Leland, 2001) is able to replicate the default metrics published by major credit rating agencies in the case of banks. This research studies five European banks from 2001 until 2020. As the reference model focus on non-financial institutions, it was adapted to fit the characteristics of banks. In particular, the assumption that firms have fixed financial costs was replaced by the hypothesis that a fraction of banks’ non-interest costs are fixed. This share was determined in order to match credit rating agencies average probabilities of default, which equals 1.14% during our 20 years sample. After gathering all data, the model was calibrated following the iterative approach, first proposed by (Vassalou & Xing, 2004). A regression of the mean model probabilities of default and distances to default at each moment in time on the equivalent ratings-implied measures showed an R-squared of 0.27 and 0.40, respectively. Furthermore, this dissertation presents a panel data regression that assesses the fixed effects of each bank. The significance test shows that the coefficients in all regressions are significant at 5% significance levels except the fixed effects associated with three banks. I concluded that the model’s credit risk indicators are very comparable to the ratings given by credit rating agencies, though the correlation is far from perfect. |
id |
RCAP_ea9708e23c9531a8cf5b2d8fa521b166 |
---|---|
oai_identifier_str |
oai:repositorio.ucp.pt:10400.14/39245 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Application of an income-based structural model to measure the probabilities of default of five european banksStructural modelBanksCredit ratingsDefault predictionCredit riskModelo estruturalClassificações de créditoPrevisão de insolvênciaRisco de créditoDomínio/Área Científica::Ciências Sociais::Economia e GestãoThis dissertation analyses whether a modified version of the EBIT-based structural model by (Goldstein, Ju, & Leland, 2001) is able to replicate the default metrics published by major credit rating agencies in the case of banks. This research studies five European banks from 2001 until 2020. As the reference model focus on non-financial institutions, it was adapted to fit the characteristics of banks. In particular, the assumption that firms have fixed financial costs was replaced by the hypothesis that a fraction of banks’ non-interest costs are fixed. This share was determined in order to match credit rating agencies average probabilities of default, which equals 1.14% during our 20 years sample. After gathering all data, the model was calibrated following the iterative approach, first proposed by (Vassalou & Xing, 2004). A regression of the mean model probabilities of default and distances to default at each moment in time on the equivalent ratings-implied measures showed an R-squared of 0.27 and 0.40, respectively. Furthermore, this dissertation presents a panel data regression that assesses the fixed effects of each bank. The significance test shows that the coefficients in all regressions are significant at 5% significance levels except the fixed effects associated with three banks. I concluded that the model’s credit risk indicators are very comparable to the ratings given by credit rating agencies, though the correlation is far from perfect.O objetivo desta dissertação é analisar se uma versão modificada do modelo estrutural de (Goldstein, Ju, & Leland, 2001) é capaz de replicar as métricas de risco de crédito publicadas pelas principais agências de classificação de risco no caso de bancos. Esta pesquisa estuda cinco bancos europeus entre 2001 e 2020. Como o modelo de referência foi desenvolvido tendo por base empresas não financeiras, o modelo foi adaptado às características dos bancos. Em particular, a hipótese de que as empresas têm custos financeiros fixos foi substituída pela hipótese de que uma fração dos custos sem juros dos bancos são fixos. Esta parcela foi determinada para corresponder, em média, às probabilidades de incumprimento implícitas nos ratings das principais agências de classificação de risco de crédito, o que equivale a 1,14% durante a nossa amostra de 20 anos. Após a coleta de todos os dados, o modelo foi calibrado seguindo uma abordagem iterativa, inicialmente proposta por (Vassalou & Xing, 2004). Uma regressão das probabilidades de incumprimento e distâncias ao incumprimento médias resultantes do modelo em cada ano nas medidas comparáveis implícitas nos ratings mostrou um R-quadrado de 27% e 40%, respetivamente. Um modelo de regressão com dados em painel e efeitos fixos de cada banco mostra que os coeficientes de todas as regressões são significativos ao nível de confiança de 5%, os efeitos fixos associados a três bancos. Em suma, concluiu-se que os indicadores de risco de crédito do modelo são comparáveis aos ratings dados pelas agências de classificação de crédito, ainda que a correlação esteja longe de ser perfeita.Silva, NunoVeritati - Repositório Institucional da Universidade Católica PortuguesaYakhlef, Rafa Ben2023-04-27T00:31:01Z2022-04-272022-042022-04-27T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.14/39245TID:203038185enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-12T17:44:44Zoai:repositorio.ucp.pt:10400.14/39245Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:32:04.830306Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Application of an income-based structural model to measure the probabilities of default of five european banks |
title |
Application of an income-based structural model to measure the probabilities of default of five european banks |
spellingShingle |
Application of an income-based structural model to measure the probabilities of default of five european banks Yakhlef, Rafa Ben Structural model Banks Credit ratings Default prediction Credit risk Modelo estrutural Classificações de crédito Previsão de insolvência Risco de crédito Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Application of an income-based structural model to measure the probabilities of default of five european banks |
title_full |
Application of an income-based structural model to measure the probabilities of default of five european banks |
title_fullStr |
Application of an income-based structural model to measure the probabilities of default of five european banks |
title_full_unstemmed |
Application of an income-based structural model to measure the probabilities of default of five european banks |
title_sort |
Application of an income-based structural model to measure the probabilities of default of five european banks |
author |
Yakhlef, Rafa Ben |
author_facet |
Yakhlef, Rafa Ben |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Nuno Veritati - Repositório Institucional da Universidade Católica Portuguesa |
dc.contributor.author.fl_str_mv |
Yakhlef, Rafa Ben |
dc.subject.por.fl_str_mv |
Structural model Banks Credit ratings Default prediction Credit risk Modelo estrutural Classificações de crédito Previsão de insolvência Risco de crédito Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Structural model Banks Credit ratings Default prediction Credit risk Modelo estrutural Classificações de crédito Previsão de insolvência Risco de crédito Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
This dissertation analyses whether a modified version of the EBIT-based structural model by (Goldstein, Ju, & Leland, 2001) is able to replicate the default metrics published by major credit rating agencies in the case of banks. This research studies five European banks from 2001 until 2020. As the reference model focus on non-financial institutions, it was adapted to fit the characteristics of banks. In particular, the assumption that firms have fixed financial costs was replaced by the hypothesis that a fraction of banks’ non-interest costs are fixed. This share was determined in order to match credit rating agencies average probabilities of default, which equals 1.14% during our 20 years sample. After gathering all data, the model was calibrated following the iterative approach, first proposed by (Vassalou & Xing, 2004). A regression of the mean model probabilities of default and distances to default at each moment in time on the equivalent ratings-implied measures showed an R-squared of 0.27 and 0.40, respectively. Furthermore, this dissertation presents a panel data regression that assesses the fixed effects of each bank. The significance test shows that the coefficients in all regressions are significant at 5% significance levels except the fixed effects associated with three banks. I concluded that the model’s credit risk indicators are very comparable to the ratings given by credit rating agencies, though the correlation is far from perfect. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-04-27 2022-04 2022-04-27T00:00:00Z 2023-04-27T00:31:01Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.14/39245 TID:203038185 |
url |
http://hdl.handle.net/10400.14/39245 |
identifier_str_mv |
TID:203038185 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132045394313216 |