Estimation of bowhead whale (Balaena mysticetus) population density using spatially explicit capture-recapture (SECR) methods
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10451/39109 |
Resumo: | Tese de mestrado em Bioestatística, Universidade de Lisboa, Faculdade de Ciências, 2019 |
id |
RCAP_ebd77d73af80b502daf763f682855239 |
---|---|
oai_identifier_str |
oai:repositorio.ul.pt:10451/39109 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Estimation of bowhead whale (Balaena mysticetus) population density using spatially explicit capture-recapture (SECR) methodsBaleia-da-GronelândiaEstimação de densidadeCaptura-recaptura espacialmente explícitaSensores fixosAcústica passivaTeses de mestrado - 2019Domínio/Área Científica::Ciências Naturais::MatemáticasTese de mestrado em Bioestatística, Universidade de Lisboa, Faculdade de Ciências, 2019Management and conservation of wildlife populations is a major concern. Population density is a key ecological variable when making adequate decisions about them. A variety of methods can be used for estimating density. Capture-recapture (CR, also known as mark- recapture) methods are a popular choice, but ignoring the spatial component of captures has historically led to problems with resulting inferences on abundance. Spatially explicit capture- recapture (SECR) methods use the spatial information to solve two key problems of classical CR: defining a precise study area where captures occur over and reducing un modeled heterogeneity in capture probabilities. Arrays of Directional Autonomous Sea floor Acoustic Recorders (DASARs) recorded calls from the Bearing-Chukchi-Beaufort (BCB) population of bowhead whales during the autumn migration. The available passive acoustic data set was collected over 5 sites (with 3–13 sensors per site) and 8 years (2007–2014), and then processed via both automated and manual procedures. The automated procedure involved computer-processing by a multi-stage detection, classification and localization algorithm. In the manual procedure, calls were detected and classified by trained staff who manually listened to the recordings and examined spectrograms. The resulting manual data presents some pitfalls for density estimation, including non-independence among sensors caused by human intervention. The non-independence leads to an excess of calls being detected in all DASARs on a site. Data from the automated procedure does not suffer the non-independence issue, but the amount of ’singletons’ is approximately 15 times higher than in the manual data. ’Singletons’ are calls detected exclusively in one sensor and we assume they mostly comprise false positives. False positives are sounds classified as coming from the species of interest, but in reality are something else. Considering only automated data from 2013 and 2014, several approaches were performed to solve the excess of singletons. Density estimation with a standard SECR analysis was conducted according to the following approaches: i)ignoring the singletons problem and analyzing all calls; ii) removing the singletons; and iii) discarding a proportion of 1 – p false positives from the singletons. Simulated results were compared to verify the best approach. We also discuss a new approach by developing a SECR likelihood function that accommodates truncation of certain acoustic cues, specifically singletons. We have laid foundations for the analysis of this data set, but there are other possible research avenues to explore. Our next steps would include embedding additional information (like received levels and bearing angle) in the SECR formulation.Marques, Tiago AndréThomas, LenRepositório da Universidade de LisboaCheoo, Gisela Vitória2019-07-15T14:50:35Z201920182019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10451/39109TID:202259870enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T16:37:22Zoai:repositorio.ul.pt:10451/39109Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:52:52.458058Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Estimation of bowhead whale (Balaena mysticetus) population density using spatially explicit capture-recapture (SECR) methods |
title |
Estimation of bowhead whale (Balaena mysticetus) population density using spatially explicit capture-recapture (SECR) methods |
spellingShingle |
Estimation of bowhead whale (Balaena mysticetus) population density using spatially explicit capture-recapture (SECR) methods Cheoo, Gisela Vitória Baleia-da-Gronelândia Estimação de densidade Captura-recaptura espacialmente explícita Sensores fixos Acústica passiva Teses de mestrado - 2019 Domínio/Área Científica::Ciências Naturais::Matemáticas |
title_short |
Estimation of bowhead whale (Balaena mysticetus) population density using spatially explicit capture-recapture (SECR) methods |
title_full |
Estimation of bowhead whale (Balaena mysticetus) population density using spatially explicit capture-recapture (SECR) methods |
title_fullStr |
Estimation of bowhead whale (Balaena mysticetus) population density using spatially explicit capture-recapture (SECR) methods |
title_full_unstemmed |
Estimation of bowhead whale (Balaena mysticetus) population density using spatially explicit capture-recapture (SECR) methods |
title_sort |
Estimation of bowhead whale (Balaena mysticetus) population density using spatially explicit capture-recapture (SECR) methods |
author |
Cheoo, Gisela Vitória |
author_facet |
Cheoo, Gisela Vitória |
author_role |
author |
dc.contributor.none.fl_str_mv |
Marques, Tiago André Thomas, Len Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Cheoo, Gisela Vitória |
dc.subject.por.fl_str_mv |
Baleia-da-Gronelândia Estimação de densidade Captura-recaptura espacialmente explícita Sensores fixos Acústica passiva Teses de mestrado - 2019 Domínio/Área Científica::Ciências Naturais::Matemáticas |
topic |
Baleia-da-Gronelândia Estimação de densidade Captura-recaptura espacialmente explícita Sensores fixos Acústica passiva Teses de mestrado - 2019 Domínio/Área Científica::Ciências Naturais::Matemáticas |
description |
Tese de mestrado em Bioestatística, Universidade de Lisboa, Faculdade de Ciências, 2019 |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2019-07-15T14:50:35Z 2019 2019-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10451/39109 TID:202259870 |
url |
http://hdl.handle.net/10451/39109 |
identifier_str_mv |
TID:202259870 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134465576927232 |