gsimcli

Detalhes bibliográficos
Autor(a) principal: Ribeiro, Sara
Data de Publicação: 2017
Outros Autores: Caineta, Júlio, Costa, Ana Cristina, Henriques, Roberto
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://doi.org/10.1002/joc.4929
Resumo: Ribeiro, S., Caineta, J., Costa, A. C., & Henriques, R. (2017). gsimcli: A geostatistical procedure for the homogenisation of climatic time series. International Journal Of Climatology, 37(8), 3452-3467. https://doi.org/10.1002/joc.4929
id RCAP_ec6e1ebfa17a5081515483bea35c1b60
oai_identifier_str oai:run.unl.pt:10362/76507
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling gsimcliA geostatistical procedure for the homogenisation of climatic time seriesBenchmarkClimate dataData qualityGeostatisticsHomogenizationPrecipitationTemperatureAtmospheric ScienceSDG 13 - Climate ActionRibeiro, S., Caineta, J., Costa, A. C., & Henriques, R. (2017). gsimcli: A geostatistical procedure for the homogenisation of climatic time series. International Journal Of Climatology, 37(8), 3452-3467. https://doi.org/10.1002/joc.4929Climate data homogenisation is of major importance in monitoring climate change and in validating weather forecasts, general circulation and regional atmospheric models, modelling of erosion and drought monitoring, among other impact studies. Discontinuities in the time series, also named inhomogeneities, may lead to biased conclusions in such studies, so they should be detected and corrected. Previous studies have suggested a geostatistical stochastic approach, which uses Direct Sequential Simulation (DSS), as a promising methodology for the homogenisation of precipitation data series. Based on the spatial and temporal correlation between the neighbouring stations, DSS calculates local probability density functions at a candidate station to detect inhomogeneities. Here, we present a new method named gsimcli (Geostatistical SIMulation for the homogenisation of CLImate data), which is an improved and extended version of that approach. This technique is novel in its incorporation of spatial correlation metrics for the homogenisation of climate time series. The method's performance is assessed with annual and monthly precipitation, and monthly temperature data from two regions of the COST-HOME benchmark data set, and the results are compared using performance metrics. We also evaluate a semi-automatic version of the gsimcli method, which performs additional adjustments for sudden shifts. Both gsimcli versions provided similar results in the homogenisation of annual series. The gsimcli method was more efficient in the homogenisation of the benchmark's precipitation series than the original geostatistical approach. The gsimcli approach performed more closely to state-of-the-art procedures in the homogenisation of monthly data than in the homogenisation of annual data. We expect that the proposed procedure will open new perspectives for the development of techniques that detect and correct inhomogeneities in climate data with monthly and sub-monthly resolution.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNRibeiro, SaraCaineta, JúlioCosta, Ana CristinaHenriques, Roberto2019-07-25T22:15:56Z20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.1002/joc.4929eng0899-8418PURE: 2327751http://www.scopus.com/inward/record.url?scp=85003533267&partnerID=8YFLogxKhttps://doi.org/10.1002/joc.4929info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:34:50Zoai:run.unl.pt:10362/76507Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:35:38.289577Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv gsimcli
A geostatistical procedure for the homogenisation of climatic time series
title gsimcli
spellingShingle gsimcli
Ribeiro, Sara
Benchmark
Climate data
Data quality
Geostatistics
Homogenization
Precipitation
Temperature
Atmospheric Science
SDG 13 - Climate Action
title_short gsimcli
title_full gsimcli
title_fullStr gsimcli
title_full_unstemmed gsimcli
title_sort gsimcli
author Ribeiro, Sara
author_facet Ribeiro, Sara
Caineta, Júlio
Costa, Ana Cristina
Henriques, Roberto
author_role author
author2 Caineta, Júlio
Costa, Ana Cristina
Henriques, Roberto
author2_role author
author
author
dc.contributor.none.fl_str_mv NOVA Information Management School (NOVA IMS)
Information Management Research Center (MagIC) - NOVA Information Management School
RUN
dc.contributor.author.fl_str_mv Ribeiro, Sara
Caineta, Júlio
Costa, Ana Cristina
Henriques, Roberto
dc.subject.por.fl_str_mv Benchmark
Climate data
Data quality
Geostatistics
Homogenization
Precipitation
Temperature
Atmospheric Science
SDG 13 - Climate Action
topic Benchmark
Climate data
Data quality
Geostatistics
Homogenization
Precipitation
Temperature
Atmospheric Science
SDG 13 - Climate Action
description Ribeiro, S., Caineta, J., Costa, A. C., & Henriques, R. (2017). gsimcli: A geostatistical procedure for the homogenisation of climatic time series. International Journal Of Climatology, 37(8), 3452-3467. https://doi.org/10.1002/joc.4929
publishDate 2017
dc.date.none.fl_str_mv 2017
2017-01-01T00:00:00Z
2019-07-25T22:15:56Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.1002/joc.4929
url https://doi.org/10.1002/joc.4929
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0899-8418
PURE: 2327751
http://www.scopus.com/inward/record.url?scp=85003533267&partnerID=8YFLogxK
https://doi.org/10.1002/joc.4929
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137976934989824