Geometric Hamiltonian formulation of a variational problem depending on the covariant acceleration
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/15636 |
Resumo: | We consider a second-order variational problem depending on the covariant acceleration, which is related to the notion of Riemannian cubic polynomials. This problem and the corresponding optimal control problem are described in the context of higher order tangent bundles using geometric tools. The main tool, a presymplectic variant of Pontryagin’s maximum principle, allows us to study the dynamics of the control problem. |
id |
RCAP_ecd6bf6aa5124e1b7ed9a8a26f49ac01 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/15636 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Geometric Hamiltonian formulation of a variational problem depending on the covariant accelerationHigher Order Tangent BundlesOptimal Control ProblemsRiemannian manifoldsWe consider a second-order variational problem depending on the covariant acceleration, which is related to the notion of Riemannian cubic polynomials. This problem and the corresponding optimal control problem are described in the context of higher order tangent bundles using geometric tools. The main tool, a presymplectic variant of Pontryagin’s maximum principle, allows us to study the dynamics of the control problem.Hindawi Publishing Corporation2016-06-02T14:07:11Z2013-01-01T00:00:00Z2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/15636eng2356-610810.1155/2013/243621Abrunheiro, LígiaCamarinha, MargaridaClemente-Gallardo, Jesúsinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:28:54Zoai:ria.ua.pt:10773/15636Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:50:56.644509Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Geometric Hamiltonian formulation of a variational problem depending on the covariant acceleration |
title |
Geometric Hamiltonian formulation of a variational problem depending on the covariant acceleration |
spellingShingle |
Geometric Hamiltonian formulation of a variational problem depending on the covariant acceleration Abrunheiro, Lígia Higher Order Tangent Bundles Optimal Control Problems Riemannian manifolds |
title_short |
Geometric Hamiltonian formulation of a variational problem depending on the covariant acceleration |
title_full |
Geometric Hamiltonian formulation of a variational problem depending on the covariant acceleration |
title_fullStr |
Geometric Hamiltonian formulation of a variational problem depending on the covariant acceleration |
title_full_unstemmed |
Geometric Hamiltonian formulation of a variational problem depending on the covariant acceleration |
title_sort |
Geometric Hamiltonian formulation of a variational problem depending on the covariant acceleration |
author |
Abrunheiro, Lígia |
author_facet |
Abrunheiro, Lígia Camarinha, Margarida Clemente-Gallardo, Jesús |
author_role |
author |
author2 |
Camarinha, Margarida Clemente-Gallardo, Jesús |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Abrunheiro, Lígia Camarinha, Margarida Clemente-Gallardo, Jesús |
dc.subject.por.fl_str_mv |
Higher Order Tangent Bundles Optimal Control Problems Riemannian manifolds |
topic |
Higher Order Tangent Bundles Optimal Control Problems Riemannian manifolds |
description |
We consider a second-order variational problem depending on the covariant acceleration, which is related to the notion of Riemannian cubic polynomials. This problem and the corresponding optimal control problem are described in the context of higher order tangent bundles using geometric tools. The main tool, a presymplectic variant of Pontryagin’s maximum principle, allows us to study the dynamics of the control problem. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01-01T00:00:00Z 2013 2016-06-02T14:07:11Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/15636 |
url |
http://hdl.handle.net/10773/15636 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2356-6108 10.1155/2013/243621 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137558930653184 |