Geometric and covariant interpretation and formulation of electromagnetism using gauge theories and the notion of tangent fibrates

Detalhes bibliográficos
Autor(a) principal: Erazo-Velasco, Ismael Elías
Data de Publicação: 2022
Outros Autores: González-Quiñonez, Luis Adrián, Rodríguez-Jijón, Roberto Iván, Bautista-Sánchez, José Vicencio
Tipo de documento: Artigo
Idioma: spa
Título da fonte: Sapienza (Curitiba)
Texto Completo: https://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/539
Resumo: The objective of this work is to reformulate the electromagnetic theory with new ideas using geometric concepts, such as differential manifold, tangent bundles, Lie algebra, all within a Gauge theory with U(1) symmetry (unitary transformation) from a more mathematical perspective and not experimental. Within the conclusions we have that: the Faraday curvature tensor rμυ is equal to the electromagnetic field tensor Fμυ when there is an affine connection with local symmetry U (1). Thus, it can be said that the electromagnetic fields are a consequence of the fact that there is a curvature in differential manifold internal to the charge density quadrivector, the charge lives in the 4-dimensional space-time of the Minkowski theory, but the charge has an internal space associated with a affine connection given by Aμ , when in that internal space there is curvature then an electric and magnetic field are reflected in the Minkowski space of time or the real space where all physical objects live and for that reason we can measure the electric field and magnetic. Only when there is curvature in that internal space does an electric field E ⃗ and a magnetic field B ⃗ manifest in our physical world.
id SAPIENZA_e3b40868b97ef50154b69678aabd0b83
oai_identifier_str oai:ojs2.journals.sapienzaeditorial.com:article/539
network_acronym_str SAPIENZA
network_name_str Sapienza (Curitiba)
repository_id_str
spelling Geometric and covariant interpretation and formulation of electromagnetism using gauge theories and the notion of tangent fibratesInterpretación y formulación geométrica y covariante del electromagnetismo usando las teorías de Gauge y la noción de fibrados tangentesInterpretação e formulação geométrica e covariante do eletromagnetismo usando teorias de calibre e a noção de fibratos tangentesEletromagnetismo, Teorias de Gauge, Noção de Fibratos TangentesElectromagnetism, Gauge Theories, Notion of Tangent FibratesElectromagnetismo, Teorías de Gauge, Noción de Fibrados TangentesThe objective of this work is to reformulate the electromagnetic theory with new ideas using geometric concepts, such as differential manifold, tangent bundles, Lie algebra, all within a Gauge theory with U(1) symmetry (unitary transformation) from a more mathematical perspective and not experimental. Within the conclusions we have that: the Faraday curvature tensor rμυ is equal to the electromagnetic field tensor Fμυ when there is an affine connection with local symmetry U (1). Thus, it can be said that the electromagnetic fields are a consequence of the fact that there is a curvature in differential manifold internal to the charge density quadrivector, the charge lives in the 4-dimensional space-time of the Minkowski theory, but the charge has an internal space associated with a affine connection given by Aμ , when in that internal space there is curvature then an electric and magnetic field are reflected in the Minkowski space of time or the real space where all physical objects live and for that reason we can measure the electric field and magnetic. Only when there is curvature in that internal space does an electric field E ⃗ and a magnetic field B ⃗ manifest in our physical world.El presente trabajo tiene como objetivo reformular con nuevas ideas la teoría electromagnética usando conceptos geométricos, como variedad diferencial, fibrados tangentes, algebra de Lie todo dentro de una teoría Gauge con simetría U(1) (Transformación unitaria) desde una perspectiva más matemática y no experimental. Dentro de las conclusiones se tiene que: el tensor de curvatura de Faraday rμυ es igual a tensor de campo electromagnético Fμυ cuando existe una conexión afín con simetría local U (1). Así, se puede decir que los campos electromagnéticos  son una consecuencia de que hay una curvatura en variedad diferencial interna al cuadrivector densidad carga, la carga  vive en el espacio tiempo 4 dimensional de la teoría Minkowski, pero  la carga tiene asociado un espacio interno con una conexión afín dado por Aμ, cuando en ese espacio interno hay curvatura entonces se reflejan una campo eléctrico y magnético en el espacio de tiempo de Minkowski o el espacio real donde viven todos los objetos físicos  y por esa la razón que podemos medir el campo eléctrico y magnético. Solo cuando en ese espacio interno hay curvatura se manifiesta en nuestro mundo físico un campo eléctrico E ⃗ y magnético B ⃗.O objetivo deste trabalho é reformular a teoria eletromagnética com novas ideias usando conceitos geométricos, como variedade diferencial, fibrados tangentes, álgebra de Lie, tudo dentro de uma teoria de Gauge com simetria U(1) (transformação unitária) de uma perspectiva mais matemática e não experimental. Dentro das conclusões temos que: o tensor de curvatura de Faraday rμυ é igual ao tensor de campo eletromagnético Fμυ quando há uma conexão afim com simetria local U (1). Assim, pode-se dizer que os campos eletromagnéticos são uma consequência do fato de que há uma curvatura no coletor diferencial interno ao quadrivetor densidade de carga, a carga vive no espaço-tempo quadridimensional da teoria de Minkowski, mas a carga tem um espaço interno associado a uma conexão afim dada por Aμ , quando nesse espaço interno há curvatura então um campo elétrico e magnético são refletidos no espaço de tempo Minkowski ou no espaço real onde todos os objetos físicos vivem e por essa razão podemos medir o campo elétrico e magnético. Somente quando há curvatura nesse espaço interno é que um campo elétrico E ⃗ e um campo magnético B ⃗ se manifestam em nosso mundo físico.Sapienza Grupo Editorial2022-10-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/53910.51798/sijis.v3i7.539Sapienza: International Journal of Interdisciplinary Studies; Vol. 3 No. 7 (2022): Theoretical and methodological plurality; 261-280Sapienza: International Journal of Interdisciplinary Studies; Vol. 3 Núm. 7 (2022): Pluralidad teórica y metodológica; 261-280Sapienza: International Journal of Interdisciplinary Studies; v. 3 n. 7 (2022): Pluralidade teórica e metodológica; 261-2802675-978010.51798/sijis.v3i7reponame:Sapienza (Curitiba)instname:Sapienza Grupo Editorialinstacron:SAPIENZAspahttps://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/539/372Copyright (c) 2022 Ismael Elías Erazo-Velasco, Luis Adrián González-Quiñonez, Roberto Iván Rodríguez-Jijón, José Vicencio Bautista-Sánchezhttps://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessErazo-Velasco, Ismael Elías González-Quiñonez, Luis Adrián Rodríguez-Jijón, Roberto IvánBautista-Sánchez, José Vicencio 2022-11-25T05:37:51Zoai:ojs2.journals.sapienzaeditorial.com:article/539Revistahttps://journals.sapienzaeditorial.com/index.php/SIJISPRIhttps://journals.sapienzaeditorial.com/index.php/SIJIS/oaieditor@sapienzaeditorial.com2675-97802675-9780opendoar:2023-01-12T16:43:04.078858Sapienza (Curitiba) - Sapienza Grupo Editorialfalse
dc.title.none.fl_str_mv Geometric and covariant interpretation and formulation of electromagnetism using gauge theories and the notion of tangent fibrates
Interpretación y formulación geométrica y covariante del electromagnetismo usando las teorías de Gauge y la noción de fibrados tangentes
Interpretação e formulação geométrica e covariante do eletromagnetismo usando teorias de calibre e a noção de fibratos tangentes
title Geometric and covariant interpretation and formulation of electromagnetism using gauge theories and the notion of tangent fibrates
spellingShingle Geometric and covariant interpretation and formulation of electromagnetism using gauge theories and the notion of tangent fibrates
Erazo-Velasco, Ismael Elías
Eletromagnetismo, Teorias de Gauge, Noção de Fibratos Tangentes
Electromagnetism, Gauge Theories, Notion of Tangent Fibrates
Electromagnetismo, Teorías de Gauge, Noción de Fibrados Tangentes
title_short Geometric and covariant interpretation and formulation of electromagnetism using gauge theories and the notion of tangent fibrates
title_full Geometric and covariant interpretation and formulation of electromagnetism using gauge theories and the notion of tangent fibrates
title_fullStr Geometric and covariant interpretation and formulation of electromagnetism using gauge theories and the notion of tangent fibrates
title_full_unstemmed Geometric and covariant interpretation and formulation of electromagnetism using gauge theories and the notion of tangent fibrates
title_sort Geometric and covariant interpretation and formulation of electromagnetism using gauge theories and the notion of tangent fibrates
author Erazo-Velasco, Ismael Elías
author_facet Erazo-Velasco, Ismael Elías
González-Quiñonez, Luis Adrián
Rodríguez-Jijón, Roberto Iván
Bautista-Sánchez, José Vicencio
author_role author
author2 González-Quiñonez, Luis Adrián
Rodríguez-Jijón, Roberto Iván
Bautista-Sánchez, José Vicencio
author2_role author
author
author
dc.contributor.author.fl_str_mv Erazo-Velasco, Ismael Elías
González-Quiñonez, Luis Adrián
Rodríguez-Jijón, Roberto Iván
Bautista-Sánchez, José Vicencio
dc.subject.por.fl_str_mv Eletromagnetismo, Teorias de Gauge, Noção de Fibratos Tangentes
Electromagnetism, Gauge Theories, Notion of Tangent Fibrates
Electromagnetismo, Teorías de Gauge, Noción de Fibrados Tangentes
topic Eletromagnetismo, Teorias de Gauge, Noção de Fibratos Tangentes
Electromagnetism, Gauge Theories, Notion of Tangent Fibrates
Electromagnetismo, Teorías de Gauge, Noción de Fibrados Tangentes
description The objective of this work is to reformulate the electromagnetic theory with new ideas using geometric concepts, such as differential manifold, tangent bundles, Lie algebra, all within a Gauge theory with U(1) symmetry (unitary transformation) from a more mathematical perspective and not experimental. Within the conclusions we have that: the Faraday curvature tensor rμυ is equal to the electromagnetic field tensor Fμυ when there is an affine connection with local symmetry U (1). Thus, it can be said that the electromagnetic fields are a consequence of the fact that there is a curvature in differential manifold internal to the charge density quadrivector, the charge lives in the 4-dimensional space-time of the Minkowski theory, but the charge has an internal space associated with a affine connection given by Aμ , when in that internal space there is curvature then an electric and magnetic field are reflected in the Minkowski space of time or the real space where all physical objects live and for that reason we can measure the electric field and magnetic. Only when there is curvature in that internal space does an electric field E ⃗ and a magnetic field B ⃗ manifest in our physical world.
publishDate 2022
dc.date.none.fl_str_mv 2022-10-30
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/539
10.51798/sijis.v3i7.539
url https://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/539
identifier_str_mv 10.51798/sijis.v3i7.539
dc.language.iso.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/539/372
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Sapienza Grupo Editorial
publisher.none.fl_str_mv Sapienza Grupo Editorial
dc.source.none.fl_str_mv Sapienza: International Journal of Interdisciplinary Studies; Vol. 3 No. 7 (2022): Theoretical and methodological plurality; 261-280
Sapienza: International Journal of Interdisciplinary Studies; Vol. 3 Núm. 7 (2022): Pluralidad teórica y metodológica; 261-280
Sapienza: International Journal of Interdisciplinary Studies; v. 3 n. 7 (2022): Pluralidade teórica e metodológica; 261-280
2675-9780
10.51798/sijis.v3i7
reponame:Sapienza (Curitiba)
instname:Sapienza Grupo Editorial
instacron:SAPIENZA
instname_str Sapienza Grupo Editorial
instacron_str SAPIENZA
institution SAPIENZA
reponame_str Sapienza (Curitiba)
collection Sapienza (Curitiba)
repository.name.fl_str_mv Sapienza (Curitiba) - Sapienza Grupo Editorial
repository.mail.fl_str_mv editor@sapienzaeditorial.com
_version_ 1797051607057170432