Geometric and covariant interpretation and formulation of electromagnetism using gauge theories and the notion of tangent fibrates
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | spa |
Título da fonte: | Sapienza (Curitiba) |
Texto Completo: | https://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/539 |
Resumo: | The objective of this work is to reformulate the electromagnetic theory with new ideas using geometric concepts, such as differential manifold, tangent bundles, Lie algebra, all within a Gauge theory with U(1) symmetry (unitary transformation) from a more mathematical perspective and not experimental. Within the conclusions we have that: the Faraday curvature tensor rμυ is equal to the electromagnetic field tensor Fμυ when there is an affine connection with local symmetry U (1). Thus, it can be said that the electromagnetic fields are a consequence of the fact that there is a curvature in differential manifold internal to the charge density quadrivector, the charge lives in the 4-dimensional space-time of the Minkowski theory, but the charge has an internal space associated with a affine connection given by Aμ , when in that internal space there is curvature then an electric and magnetic field are reflected in the Minkowski space of time or the real space where all physical objects live and for that reason we can measure the electric field and magnetic. Only when there is curvature in that internal space does an electric field E ⃗ and a magnetic field B ⃗ manifest in our physical world. |
id |
SAPIENZA_e3b40868b97ef50154b69678aabd0b83 |
---|---|
oai_identifier_str |
oai:ojs2.journals.sapienzaeditorial.com:article/539 |
network_acronym_str |
SAPIENZA |
network_name_str |
Sapienza (Curitiba) |
repository_id_str |
|
spelling |
Geometric and covariant interpretation and formulation of electromagnetism using gauge theories and the notion of tangent fibratesInterpretación y formulación geométrica y covariante del electromagnetismo usando las teorías de Gauge y la noción de fibrados tangentesInterpretação e formulação geométrica e covariante do eletromagnetismo usando teorias de calibre e a noção de fibratos tangentesEletromagnetismo, Teorias de Gauge, Noção de Fibratos TangentesElectromagnetism, Gauge Theories, Notion of Tangent FibratesElectromagnetismo, Teorías de Gauge, Noción de Fibrados TangentesThe objective of this work is to reformulate the electromagnetic theory with new ideas using geometric concepts, such as differential manifold, tangent bundles, Lie algebra, all within a Gauge theory with U(1) symmetry (unitary transformation) from a more mathematical perspective and not experimental. Within the conclusions we have that: the Faraday curvature tensor rμυ is equal to the electromagnetic field tensor Fμυ when there is an affine connection with local symmetry U (1). Thus, it can be said that the electromagnetic fields are a consequence of the fact that there is a curvature in differential manifold internal to the charge density quadrivector, the charge lives in the 4-dimensional space-time of the Minkowski theory, but the charge has an internal space associated with a affine connection given by Aμ , when in that internal space there is curvature then an electric and magnetic field are reflected in the Minkowski space of time or the real space where all physical objects live and for that reason we can measure the electric field and magnetic. Only when there is curvature in that internal space does an electric field E ⃗ and a magnetic field B ⃗ manifest in our physical world.El presente trabajo tiene como objetivo reformular con nuevas ideas la teoría electromagnética usando conceptos geométricos, como variedad diferencial, fibrados tangentes, algebra de Lie todo dentro de una teoría Gauge con simetría U(1) (Transformación unitaria) desde una perspectiva más matemática y no experimental. Dentro de las conclusiones se tiene que: el tensor de curvatura de Faraday rμυ es igual a tensor de campo electromagnético Fμυ cuando existe una conexión afín con simetría local U (1). Así, se puede decir que los campos electromagnéticos son una consecuencia de que hay una curvatura en variedad diferencial interna al cuadrivector densidad carga, la carga vive en el espacio tiempo 4 dimensional de la teoría Minkowski, pero la carga tiene asociado un espacio interno con una conexión afín dado por Aμ, cuando en ese espacio interno hay curvatura entonces se reflejan una campo eléctrico y magnético en el espacio de tiempo de Minkowski o el espacio real donde viven todos los objetos físicos y por esa la razón que podemos medir el campo eléctrico y magnético. Solo cuando en ese espacio interno hay curvatura se manifiesta en nuestro mundo físico un campo eléctrico E ⃗ y magnético B ⃗.O objetivo deste trabalho é reformular a teoria eletromagnética com novas ideias usando conceitos geométricos, como variedade diferencial, fibrados tangentes, álgebra de Lie, tudo dentro de uma teoria de Gauge com simetria U(1) (transformação unitária) de uma perspectiva mais matemática e não experimental. Dentro das conclusões temos que: o tensor de curvatura de Faraday rμυ é igual ao tensor de campo eletromagnético Fμυ quando há uma conexão afim com simetria local U (1). Assim, pode-se dizer que os campos eletromagnéticos são uma consequência do fato de que há uma curvatura no coletor diferencial interno ao quadrivetor densidade de carga, a carga vive no espaço-tempo quadridimensional da teoria de Minkowski, mas a carga tem um espaço interno associado a uma conexão afim dada por Aμ , quando nesse espaço interno há curvatura então um campo elétrico e magnético são refletidos no espaço de tempo Minkowski ou no espaço real onde todos os objetos físicos vivem e por essa razão podemos medir o campo elétrico e magnético. Somente quando há curvatura nesse espaço interno é que um campo elétrico E ⃗ e um campo magnético B ⃗ se manifestam em nosso mundo físico.Sapienza Grupo Editorial2022-10-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/53910.51798/sijis.v3i7.539Sapienza: International Journal of Interdisciplinary Studies; Vol. 3 No. 7 (2022): Theoretical and methodological plurality; 261-280Sapienza: International Journal of Interdisciplinary Studies; Vol. 3 Núm. 7 (2022): Pluralidad teórica y metodológica; 261-280Sapienza: International Journal of Interdisciplinary Studies; v. 3 n. 7 (2022): Pluralidade teórica e metodológica; 261-2802675-978010.51798/sijis.v3i7reponame:Sapienza (Curitiba)instname:Sapienza Grupo Editorialinstacron:SAPIENZAspahttps://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/539/372Copyright (c) 2022 Ismael Elías Erazo-Velasco, Luis Adrián González-Quiñonez, Roberto Iván Rodríguez-Jijón, José Vicencio Bautista-Sánchezhttps://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessErazo-Velasco, Ismael Elías González-Quiñonez, Luis Adrián Rodríguez-Jijón, Roberto IvánBautista-Sánchez, José Vicencio 2022-11-25T05:37:51Zoai:ojs2.journals.sapienzaeditorial.com:article/539Revistahttps://journals.sapienzaeditorial.com/index.php/SIJISPRIhttps://journals.sapienzaeditorial.com/index.php/SIJIS/oaieditor@sapienzaeditorial.com2675-97802675-9780opendoar:2023-01-12T16:43:04.078858Sapienza (Curitiba) - Sapienza Grupo Editorialfalse |
dc.title.none.fl_str_mv |
Geometric and covariant interpretation and formulation of electromagnetism using gauge theories and the notion of tangent fibrates Interpretación y formulación geométrica y covariante del electromagnetismo usando las teorías de Gauge y la noción de fibrados tangentes Interpretação e formulação geométrica e covariante do eletromagnetismo usando teorias de calibre e a noção de fibratos tangentes |
title |
Geometric and covariant interpretation and formulation of electromagnetism using gauge theories and the notion of tangent fibrates |
spellingShingle |
Geometric and covariant interpretation and formulation of electromagnetism using gauge theories and the notion of tangent fibrates Erazo-Velasco, Ismael Elías Eletromagnetismo, Teorias de Gauge, Noção de Fibratos Tangentes Electromagnetism, Gauge Theories, Notion of Tangent Fibrates Electromagnetismo, Teorías de Gauge, Noción de Fibrados Tangentes |
title_short |
Geometric and covariant interpretation and formulation of electromagnetism using gauge theories and the notion of tangent fibrates |
title_full |
Geometric and covariant interpretation and formulation of electromagnetism using gauge theories and the notion of tangent fibrates |
title_fullStr |
Geometric and covariant interpretation and formulation of electromagnetism using gauge theories and the notion of tangent fibrates |
title_full_unstemmed |
Geometric and covariant interpretation and formulation of electromagnetism using gauge theories and the notion of tangent fibrates |
title_sort |
Geometric and covariant interpretation and formulation of electromagnetism using gauge theories and the notion of tangent fibrates |
author |
Erazo-Velasco, Ismael Elías |
author_facet |
Erazo-Velasco, Ismael Elías González-Quiñonez, Luis Adrián Rodríguez-Jijón, Roberto Iván Bautista-Sánchez, José Vicencio |
author_role |
author |
author2 |
González-Quiñonez, Luis Adrián Rodríguez-Jijón, Roberto Iván Bautista-Sánchez, José Vicencio |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Erazo-Velasco, Ismael Elías González-Quiñonez, Luis Adrián Rodríguez-Jijón, Roberto Iván Bautista-Sánchez, José Vicencio |
dc.subject.por.fl_str_mv |
Eletromagnetismo, Teorias de Gauge, Noção de Fibratos Tangentes Electromagnetism, Gauge Theories, Notion of Tangent Fibrates Electromagnetismo, Teorías de Gauge, Noción de Fibrados Tangentes |
topic |
Eletromagnetismo, Teorias de Gauge, Noção de Fibratos Tangentes Electromagnetism, Gauge Theories, Notion of Tangent Fibrates Electromagnetismo, Teorías de Gauge, Noción de Fibrados Tangentes |
description |
The objective of this work is to reformulate the electromagnetic theory with new ideas using geometric concepts, such as differential manifold, tangent bundles, Lie algebra, all within a Gauge theory with U(1) symmetry (unitary transformation) from a more mathematical perspective and not experimental. Within the conclusions we have that: the Faraday curvature tensor rμυ is equal to the electromagnetic field tensor Fμυ when there is an affine connection with local symmetry U (1). Thus, it can be said that the electromagnetic fields are a consequence of the fact that there is a curvature in differential manifold internal to the charge density quadrivector, the charge lives in the 4-dimensional space-time of the Minkowski theory, but the charge has an internal space associated with a affine connection given by Aμ , when in that internal space there is curvature then an electric and magnetic field are reflected in the Minkowski space of time or the real space where all physical objects live and for that reason we can measure the electric field and magnetic. Only when there is curvature in that internal space does an electric field E ⃗ and a magnetic field B ⃗ manifest in our physical world. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10-30 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/539 10.51798/sijis.v3i7.539 |
url |
https://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/539 |
identifier_str_mv |
10.51798/sijis.v3i7.539 |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/539/372 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Sapienza Grupo Editorial |
publisher.none.fl_str_mv |
Sapienza Grupo Editorial |
dc.source.none.fl_str_mv |
Sapienza: International Journal of Interdisciplinary Studies; Vol. 3 No. 7 (2022): Theoretical and methodological plurality; 261-280 Sapienza: International Journal of Interdisciplinary Studies; Vol. 3 Núm. 7 (2022): Pluralidad teórica y metodológica; 261-280 Sapienza: International Journal of Interdisciplinary Studies; v. 3 n. 7 (2022): Pluralidade teórica e metodológica; 261-280 2675-9780 10.51798/sijis.v3i7 reponame:Sapienza (Curitiba) instname:Sapienza Grupo Editorial instacron:SAPIENZA |
instname_str |
Sapienza Grupo Editorial |
instacron_str |
SAPIENZA |
institution |
SAPIENZA |
reponame_str |
Sapienza (Curitiba) |
collection |
Sapienza (Curitiba) |
repository.name.fl_str_mv |
Sapienza (Curitiba) - Sapienza Grupo Editorial |
repository.mail.fl_str_mv |
editor@sapienzaeditorial.com |
_version_ |
1797051607057170432 |