DFU-VGG, a Novel and Improved VGG-19 Network for Diabetic Foot Ulcer Classification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , |
Tipo de documento: | Livro |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/149242 |
Resumo: | A complication caused by diabetes mellitus is the appearance of lesions in the foot region called Diabetic Foot Ulcers (DFU). Delayed treatment can lead to infection or ulcer ischemia, leading to lower limb amputation in an advanced stage. This article proposes the DFU-VGG, a convolutional neural network (CNN) inspired by convolutional blocks of VGG-19 but with smaller dense layers and batch normalizations operations. To specify the DFU-VGG parameters, we fine-tuned s even different CNN architectures using two image datasets containing 8,250 images with different color, contrast, resolution, and texture features. The proposed evaluation identifies f our c lasses: none, ischemia, infection, and both. Our approach achieved 93.45% of accuracy and an excellent Kappa index of 89.24%. |
id |
RCAP_ed32ba54723785108704397df4e07873 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/149242 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
DFU-VGG, a Novel and Improved VGG-19 Network for Diabetic Foot Ulcer ClassificationA complication caused by diabetes mellitus is the appearance of lesions in the foot region called Diabetic Foot Ulcers (DFU). Delayed treatment can lead to infection or ulcer ischemia, leading to lower limb amputation in an advanced stage. This article proposes the DFU-VGG, a convolutional neural network (CNN) inspired by convolutional blocks of VGG-19 but with smaller dense layers and batch normalizations operations. To specify the DFU-VGG parameters, we fine-tuned s even different CNN architectures using two image datasets containing 8,250 images with different color, contrast, resolution, and texture features. The proposed evaluation identifies f our c lasses: none, ischemia, infection, and both. Our approach achieved 93.45% of accuracy and an excellent Kappa index of 89.24%.20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://hdl.handle.net/10216/149242eng10.1109/iwssip55020.2022.9854392Santos, FSantos, EVogado, LHIto, MBianchi, AJoão Manuel R. S. TavaresVeras, Rinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-09-27T07:51:28Zoai:repositorio-aberto.up.pt:10216/149242Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-09-27T07:51:28Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
DFU-VGG, a Novel and Improved VGG-19 Network for Diabetic Foot Ulcer Classification |
title |
DFU-VGG, a Novel and Improved VGG-19 Network for Diabetic Foot Ulcer Classification |
spellingShingle |
DFU-VGG, a Novel and Improved VGG-19 Network for Diabetic Foot Ulcer Classification Santos, F |
title_short |
DFU-VGG, a Novel and Improved VGG-19 Network for Diabetic Foot Ulcer Classification |
title_full |
DFU-VGG, a Novel and Improved VGG-19 Network for Diabetic Foot Ulcer Classification |
title_fullStr |
DFU-VGG, a Novel and Improved VGG-19 Network for Diabetic Foot Ulcer Classification |
title_full_unstemmed |
DFU-VGG, a Novel and Improved VGG-19 Network for Diabetic Foot Ulcer Classification |
title_sort |
DFU-VGG, a Novel and Improved VGG-19 Network for Diabetic Foot Ulcer Classification |
author |
Santos, F |
author_facet |
Santos, F Santos, E Vogado, LH Ito, M Bianchi, A João Manuel R. S. Tavares Veras, R |
author_role |
author |
author2 |
Santos, E Vogado, LH Ito, M Bianchi, A João Manuel R. S. Tavares Veras, R |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Santos, F Santos, E Vogado, LH Ito, M Bianchi, A João Manuel R. S. Tavares Veras, R |
description |
A complication caused by diabetes mellitus is the appearance of lesions in the foot region called Diabetic Foot Ulcers (DFU). Delayed treatment can lead to infection or ulcer ischemia, leading to lower limb amputation in an advanced stage. This article proposes the DFU-VGG, a convolutional neural network (CNN) inspired by convolutional blocks of VGG-19 but with smaller dense layers and batch normalizations operations. To specify the DFU-VGG parameters, we fine-tuned s even different CNN architectures using two image datasets containing 8,250 images with different color, contrast, resolution, and texture features. The proposed evaluation identifies f our c lasses: none, ischemia, infection, and both. Our approach achieved 93.45% of accuracy and an excellent Kappa index of 89.24%. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 2022-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/book |
format |
book |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/149242 |
url |
https://hdl.handle.net/10216/149242 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1109/iwssip55020.2022.9854392 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817547705244712961 |