Automatic indexation of the pension age to life expectancy
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/119399 |
Resumo: | Ayuso, M., Bravo, J. M., Holzmann, R., & Palmer, E. (2021). Automatic indexation of the pension age to life expectancy: When policy design matters. Risks, 9(5), 1-28. [96]. https://doi.org/10.3390/risks9050096 |
id |
RCAP_edd8c386d2f2bfcc6a53ea6193cfb46c |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/119399 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Automatic indexation of the pension age to life expectancyWhen policy design mattersBayesian Model EnsembleForecastingHeterogeneityLife expectancyPension policyRetirement ageStochastic mortality modelsAccountingEconomics, Econometrics and Finance (miscellaneous)Strategy and ManagementSDG 3 - Good Health and Well-beingAyuso, M., Bravo, J. M., Holzmann, R., & Palmer, E. (2021). Automatic indexation of the pension age to life expectancy: When policy design matters. Risks, 9(5), 1-28. [96]. https://doi.org/10.3390/risks9050096Increasing retirement ages in an automatic or scheduled way with increasing life expectancy at retirement is a popular pension policy response to continuous longevity improvements. The question addressed here is: to what extent is simply adopting this approach likely to fulfill the overall goals of policy? To shed some light on the answer, we examine the policies of four countries that have recently introduced automatic indexation of pension ages to life expectancy–The Netherlands, Denmark, Portugal and Slovakia. To this end, we forecast an alternative period and cohort life expectancy measures using a Bayesian Model Ensemble of heterogeneous stochastic mortality models comprised of parametric models, principal component methods, and smoothing approaches. The approach involves both the selection of the model confidence set and the determination of optimal weights. Model-averaged Bayesian credible prediction intervals are derived accounting for various stochastic process, model, and parameter risks. The results show that: (i) retirement ages are forecasted to increase substantially in the coming decades, particularly if a constant period in retirement is targeted; (ii) retirement age policy outcomes may substantially deviate from the policy goal(s) depending on the design adopted and its implementation; and (iii) the choice of a cohort over period life expectancy measure matters. In addition, the distributional issues arising with the increasing socio-economic gap in life expectancy remain largely unaddressed.Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNAyuso, MercedesBravo, Jorge M.Holzmann, RobertPalmer, Edward2021-06-16T22:20:08Z2021-052021-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article28application/pdfhttp://hdl.handle.net/10362/119399eng2227-9091PURE: 31969600https://doi.org/10.3390/risks9050096info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T17:53:52Zoai:run.unl.pt:10362/119399Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T17:53:52Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Automatic indexation of the pension age to life expectancy When policy design matters |
title |
Automatic indexation of the pension age to life expectancy |
spellingShingle |
Automatic indexation of the pension age to life expectancy Ayuso, Mercedes Bayesian Model Ensemble Forecasting Heterogeneity Life expectancy Pension policy Retirement age Stochastic mortality models Accounting Economics, Econometrics and Finance (miscellaneous) Strategy and Management SDG 3 - Good Health and Well-being |
title_short |
Automatic indexation of the pension age to life expectancy |
title_full |
Automatic indexation of the pension age to life expectancy |
title_fullStr |
Automatic indexation of the pension age to life expectancy |
title_full_unstemmed |
Automatic indexation of the pension age to life expectancy |
title_sort |
Automatic indexation of the pension age to life expectancy |
author |
Ayuso, Mercedes |
author_facet |
Ayuso, Mercedes Bravo, Jorge M. Holzmann, Robert Palmer, Edward |
author_role |
author |
author2 |
Bravo, Jorge M. Holzmann, Robert Palmer, Edward |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
dc.contributor.author.fl_str_mv |
Ayuso, Mercedes Bravo, Jorge M. Holzmann, Robert Palmer, Edward |
dc.subject.por.fl_str_mv |
Bayesian Model Ensemble Forecasting Heterogeneity Life expectancy Pension policy Retirement age Stochastic mortality models Accounting Economics, Econometrics and Finance (miscellaneous) Strategy and Management SDG 3 - Good Health and Well-being |
topic |
Bayesian Model Ensemble Forecasting Heterogeneity Life expectancy Pension policy Retirement age Stochastic mortality models Accounting Economics, Econometrics and Finance (miscellaneous) Strategy and Management SDG 3 - Good Health and Well-being |
description |
Ayuso, M., Bravo, J. M., Holzmann, R., & Palmer, E. (2021). Automatic indexation of the pension age to life expectancy: When policy design matters. Risks, 9(5), 1-28. [96]. https://doi.org/10.3390/risks9050096 |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-16T22:20:08Z 2021-05 2021-05-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/119399 |
url |
http://hdl.handle.net/10362/119399 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2227-9091 PURE: 31969600 https://doi.org/10.3390/risks9050096 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
28 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545805170475008 |