Automatic indexation of the pension age to life expectancy

Detalhes bibliográficos
Autor(a) principal: Ayuso, Mercedes
Data de Publicação: 2021
Outros Autores: Bravo, Jorge M., Holzmann, Robert, Palmer, Edward
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/119399
Resumo: Ayuso, M., Bravo, J. M., Holzmann, R., & Palmer, E. (2021). Automatic indexation of the pension age to life expectancy: When policy design matters. Risks, 9(5), 1-28. [96]. https://doi.org/10.3390/risks9050096
id RCAP_edd8c386d2f2bfcc6a53ea6193cfb46c
oai_identifier_str oai:run.unl.pt:10362/119399
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Automatic indexation of the pension age to life expectancyWhen policy design mattersBayesian Model EnsembleForecastingHeterogeneityLife expectancyPension policyRetirement ageStochastic mortality modelsAccountingEconomics, Econometrics and Finance (miscellaneous)Strategy and ManagementSDG 3 - Good Health and Well-beingAyuso, M., Bravo, J. M., Holzmann, R., & Palmer, E. (2021). Automatic indexation of the pension age to life expectancy: When policy design matters. Risks, 9(5), 1-28. [96]. https://doi.org/10.3390/risks9050096Increasing retirement ages in an automatic or scheduled way with increasing life expectancy at retirement is a popular pension policy response to continuous longevity improvements. The question addressed here is: to what extent is simply adopting this approach likely to fulfill the overall goals of policy? To shed some light on the answer, we examine the policies of four countries that have recently introduced automatic indexation of pension ages to life expectancy–The Netherlands, Denmark, Portugal and Slovakia. To this end, we forecast an alternative period and cohort life expectancy measures using a Bayesian Model Ensemble of heterogeneous stochastic mortality models comprised of parametric models, principal component methods, and smoothing approaches. The approach involves both the selection of the model confidence set and the determination of optimal weights. Model-averaged Bayesian credible prediction intervals are derived accounting for various stochastic process, model, and parameter risks. The results show that: (i) retirement ages are forecasted to increase substantially in the coming decades, particularly if a constant period in retirement is targeted; (ii) retirement age policy outcomes may substantially deviate from the policy goal(s) depending on the design adopted and its implementation; and (iii) the choice of a cohort over period life expectancy measure matters. In addition, the distributional issues arising with the increasing socio-economic gap in life expectancy remain largely unaddressed.Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNAyuso, MercedesBravo, Jorge M.Holzmann, RobertPalmer, Edward2021-06-16T22:20:08Z2021-052021-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article28application/pdfhttp://hdl.handle.net/10362/119399eng2227-9091PURE: 31969600https://doi.org/10.3390/risks9050096info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T17:53:52Zoai:run.unl.pt:10362/119399Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T17:53:52Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Automatic indexation of the pension age to life expectancy
When policy design matters
title Automatic indexation of the pension age to life expectancy
spellingShingle Automatic indexation of the pension age to life expectancy
Ayuso, Mercedes
Bayesian Model Ensemble
Forecasting
Heterogeneity
Life expectancy
Pension policy
Retirement age
Stochastic mortality models
Accounting
Economics, Econometrics and Finance (miscellaneous)
Strategy and Management
SDG 3 - Good Health and Well-being
title_short Automatic indexation of the pension age to life expectancy
title_full Automatic indexation of the pension age to life expectancy
title_fullStr Automatic indexation of the pension age to life expectancy
title_full_unstemmed Automatic indexation of the pension age to life expectancy
title_sort Automatic indexation of the pension age to life expectancy
author Ayuso, Mercedes
author_facet Ayuso, Mercedes
Bravo, Jorge M.
Holzmann, Robert
Palmer, Edward
author_role author
author2 Bravo, Jorge M.
Holzmann, Robert
Palmer, Edward
author2_role author
author
author
dc.contributor.none.fl_str_mv Information Management Research Center (MagIC) - NOVA Information Management School
NOVA Information Management School (NOVA IMS)
RUN
dc.contributor.author.fl_str_mv Ayuso, Mercedes
Bravo, Jorge M.
Holzmann, Robert
Palmer, Edward
dc.subject.por.fl_str_mv Bayesian Model Ensemble
Forecasting
Heterogeneity
Life expectancy
Pension policy
Retirement age
Stochastic mortality models
Accounting
Economics, Econometrics and Finance (miscellaneous)
Strategy and Management
SDG 3 - Good Health and Well-being
topic Bayesian Model Ensemble
Forecasting
Heterogeneity
Life expectancy
Pension policy
Retirement age
Stochastic mortality models
Accounting
Economics, Econometrics and Finance (miscellaneous)
Strategy and Management
SDG 3 - Good Health and Well-being
description Ayuso, M., Bravo, J. M., Holzmann, R., & Palmer, E. (2021). Automatic indexation of the pension age to life expectancy: When policy design matters. Risks, 9(5), 1-28. [96]. https://doi.org/10.3390/risks9050096
publishDate 2021
dc.date.none.fl_str_mv 2021-06-16T22:20:08Z
2021-05
2021-05-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/119399
url http://hdl.handle.net/10362/119399
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2227-9091
PURE: 31969600
https://doi.org/10.3390/risks9050096
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 28
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817545805170475008