Multiple Linear Regression and Artificial Neural Networks to Predict Time and Efficiency of Soil Vapor Extraction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/5313 |
Resumo: | The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability. |
id |
RCAP_ee811eb64628d5c3f6643abab78c8158 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/5313 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Multiple Linear Regression and Artificial Neural Networks to Predict Time and Efficiency of Soil Vapor ExtractionSoil vapor extractionArtificial neural networksMultiple linear regressionRemediation timeProcess efficiencyThe prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.Springer International PublishingRepositório Científico do Instituto Politécnico do PortoAlbergaria, José TomásMartins, F.G.Alvim-Ferraz, Maria da Conceição M.Delerue-Matos, Cristina2015-01-06T15:30:25Z2014-072014-07-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/5313eng10.1007/s11270-014-2058-yinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:45:21Zoai:recipp.ipp.pt:10400.22/5313Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:25:58.922630Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Multiple Linear Regression and Artificial Neural Networks to Predict Time and Efficiency of Soil Vapor Extraction |
title |
Multiple Linear Regression and Artificial Neural Networks to Predict Time and Efficiency of Soil Vapor Extraction |
spellingShingle |
Multiple Linear Regression and Artificial Neural Networks to Predict Time and Efficiency of Soil Vapor Extraction Albergaria, José Tomás Soil vapor extraction Artificial neural networks Multiple linear regression Remediation time Process efficiency |
title_short |
Multiple Linear Regression and Artificial Neural Networks to Predict Time and Efficiency of Soil Vapor Extraction |
title_full |
Multiple Linear Regression and Artificial Neural Networks to Predict Time and Efficiency of Soil Vapor Extraction |
title_fullStr |
Multiple Linear Regression and Artificial Neural Networks to Predict Time and Efficiency of Soil Vapor Extraction |
title_full_unstemmed |
Multiple Linear Regression and Artificial Neural Networks to Predict Time and Efficiency of Soil Vapor Extraction |
title_sort |
Multiple Linear Regression and Artificial Neural Networks to Predict Time and Efficiency of Soil Vapor Extraction |
author |
Albergaria, José Tomás |
author_facet |
Albergaria, José Tomás Martins, F.G. Alvim-Ferraz, Maria da Conceição M. Delerue-Matos, Cristina |
author_role |
author |
author2 |
Martins, F.G. Alvim-Ferraz, Maria da Conceição M. Delerue-Matos, Cristina |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Albergaria, José Tomás Martins, F.G. Alvim-Ferraz, Maria da Conceição M. Delerue-Matos, Cristina |
dc.subject.por.fl_str_mv |
Soil vapor extraction Artificial neural networks Multiple linear regression Remediation time Process efficiency |
topic |
Soil vapor extraction Artificial neural networks Multiple linear regression Remediation time Process efficiency |
description |
The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-07 2014-07-01T00:00:00Z 2015-01-06T15:30:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/5313 |
url |
http://hdl.handle.net/10400.22/5313 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1007/s11270-014-2058-y |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer International Publishing |
publisher.none.fl_str_mv |
Springer International Publishing |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131354657456128 |