In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10198/609 |
Resumo: | Progress in microfabricated technologies has attracted the attention of researchers in several areas, including microcirculation. Microfluidic devices are expected to provide powerful tools not only to better understand the biophysical behavior of blood flow in microvessels, but also for disease diagnosis. Such microfluidic devices for biomedical applications must be compatible with state-of-the-art flow measuring techniques, such as confocal microparticle image velocimetry (PIV). This confocal system has the ability to not only quantify flow patterns inside microchannels with high spatial and temporal resolution, but can also be used to obtain velocity measurements for several optically sectioned images along the depth of the microchannel. In this study, we investigated the ability to obtain velocity measurements using physiological saline (PS) and in vitro blood in a rectangular polydimethysiloxane (PDMS) microchannel (300 μm wide, 45 μm deep) using a confocal micro-PIV system. Applying this combination, measurements of trace particles seeded in the flow were performed for both fluids at a constant flow rate (Re = 0.02). Velocity profiles were acquired by successive measurements at different depth positions to obtain three-dimensional (3-D) information on the behavior of both fluid flows. Generally, the velocity profiles were found to be markedly blunt in the central region, mainly due to the low aspect ratio (h/w = 0.15) of the rectangular microchannel. Predictions using a theoretical model for the rectangular microchannel corresponded quite well with the experimental micro-PIV results for the PS fluid. However, for the in vitro blood with 20% hematocrit, small fluctuations were found in the velocity profiles. The present study clearly shows that confocal micro-PIV can be effectively integrated with a PDMS microchannel and used to obtain blood velocity profiles along the full depth of the microchannel because of its unique 3-D optical sectioning ability. Advantages and disadvantages of PDMS microchannels over glass capillaries are also discussed. |
id |
RCAP_efa110652bd475448c9b70381351a669 |
---|---|
oai_identifier_str |
oai:bibliotecadigital.ipb.pt:10198/609 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV systemMicrocirculationConfocal micro-PIVPDMS microchannelRed blood cellsMesoscopic blood flowProgress in microfabricated technologies has attracted the attention of researchers in several areas, including microcirculation. Microfluidic devices are expected to provide powerful tools not only to better understand the biophysical behavior of blood flow in microvessels, but also for disease diagnosis. Such microfluidic devices for biomedical applications must be compatible with state-of-the-art flow measuring techniques, such as confocal microparticle image velocimetry (PIV). This confocal system has the ability to not only quantify flow patterns inside microchannels with high spatial and temporal resolution, but can also be used to obtain velocity measurements for several optically sectioned images along the depth of the microchannel. In this study, we investigated the ability to obtain velocity measurements using physiological saline (PS) and in vitro blood in a rectangular polydimethysiloxane (PDMS) microchannel (300 μm wide, 45 μm deep) using a confocal micro-PIV system. Applying this combination, measurements of trace particles seeded in the flow were performed for both fluids at a constant flow rate (Re = 0.02). Velocity profiles were acquired by successive measurements at different depth positions to obtain three-dimensional (3-D) information on the behavior of both fluid flows. Generally, the velocity profiles were found to be markedly blunt in the central region, mainly due to the low aspect ratio (h/w = 0.15) of the rectangular microchannel. Predictions using a theoretical model for the rectangular microchannel corresponded quite well with the experimental micro-PIV results for the PS fluid. However, for the in vitro blood with 20% hematocrit, small fluctuations were found in the velocity profiles. The present study clearly shows that confocal micro-PIV can be effectively integrated with a PDMS microchannel and used to obtain blood velocity profiles along the full depth of the microchannel because of its unique 3-D optical sectioning ability. Advantages and disadvantages of PDMS microchannels over glass capillaries are also discussed.SpringerBiblioteca Digital do IPBLima, Rui A.Wada, ShigeoTanaka, ShujiTakeda, MotohiroIshikawa, TakujiTsubota, Ken-ichiImai, YohsukeYamaguchi, Takami2008-04-07T15:52:21Z20082008-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10198/609engengLima, R.; Wada, S.; Tanaka, S.; Takeda, M.; Ishikawa, T.; Tsubota, K.; Imai, Y.; Yamaguchi, T. (2008). In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Biomedical Microdevices. ISSN 1387-2176. 10:2, p.153-1671387-2176Biomedical Microdevicesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-21T10:03:31Zoai:bibliotecadigital.ipb.pt:10198/609Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:54:18.504779Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system |
title |
In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system |
spellingShingle |
In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system Lima, Rui A. Microcirculation Confocal micro-PIV PDMS microchannel Red blood cells Mesoscopic blood flow |
title_short |
In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system |
title_full |
In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system |
title_fullStr |
In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system |
title_full_unstemmed |
In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system |
title_sort |
In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system |
author |
Lima, Rui A. |
author_facet |
Lima, Rui A. Wada, Shigeo Tanaka, Shuji Takeda, Motohiro Ishikawa, Takuji Tsubota, Ken-ichi Imai, Yohsuke Yamaguchi, Takami |
author_role |
author |
author2 |
Wada, Shigeo Tanaka, Shuji Takeda, Motohiro Ishikawa, Takuji Tsubota, Ken-ichi Imai, Yohsuke Yamaguchi, Takami |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
Biblioteca Digital do IPB |
dc.contributor.author.fl_str_mv |
Lima, Rui A. Wada, Shigeo Tanaka, Shuji Takeda, Motohiro Ishikawa, Takuji Tsubota, Ken-ichi Imai, Yohsuke Yamaguchi, Takami |
dc.subject.por.fl_str_mv |
Microcirculation Confocal micro-PIV PDMS microchannel Red blood cells Mesoscopic blood flow |
topic |
Microcirculation Confocal micro-PIV PDMS microchannel Red blood cells Mesoscopic blood flow |
description |
Progress in microfabricated technologies has attracted the attention of researchers in several areas, including microcirculation. Microfluidic devices are expected to provide powerful tools not only to better understand the biophysical behavior of blood flow in microvessels, but also for disease diagnosis. Such microfluidic devices for biomedical applications must be compatible with state-of-the-art flow measuring techniques, such as confocal microparticle image velocimetry (PIV). This confocal system has the ability to not only quantify flow patterns inside microchannels with high spatial and temporal resolution, but can also be used to obtain velocity measurements for several optically sectioned images along the depth of the microchannel. In this study, we investigated the ability to obtain velocity measurements using physiological saline (PS) and in vitro blood in a rectangular polydimethysiloxane (PDMS) microchannel (300 μm wide, 45 μm deep) using a confocal micro-PIV system. Applying this combination, measurements of trace particles seeded in the flow were performed for both fluids at a constant flow rate (Re = 0.02). Velocity profiles were acquired by successive measurements at different depth positions to obtain three-dimensional (3-D) information on the behavior of both fluid flows. Generally, the velocity profiles were found to be markedly blunt in the central region, mainly due to the low aspect ratio (h/w = 0.15) of the rectangular microchannel. Predictions using a theoretical model for the rectangular microchannel corresponded quite well with the experimental micro-PIV results for the PS fluid. However, for the in vitro blood with 20% hematocrit, small fluctuations were found in the velocity profiles. The present study clearly shows that confocal micro-PIV can be effectively integrated with a PDMS microchannel and used to obtain blood velocity profiles along the full depth of the microchannel because of its unique 3-D optical sectioning ability. Advantages and disadvantages of PDMS microchannels over glass capillaries are also discussed. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-04-07T15:52:21Z 2008 2008-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10198/609 |
url |
http://hdl.handle.net/10198/609 |
dc.language.iso.fl_str_mv |
eng eng |
language |
eng |
dc.relation.none.fl_str_mv |
Lima, R.; Wada, S.; Tanaka, S.; Takeda, M.; Ishikawa, T.; Tsubota, K.; Imai, Y.; Yamaguchi, T. (2008). In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Biomedical Microdevices. ISSN 1387-2176. 10:2, p.153-167 1387-2176 Biomedical Microdevices |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1817551568366469120 |