Modelo de Kuramoto com campos aleatórios em redes complexas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/15940 |
Resumo: | Neste trabalho é estudado o modelo de Kuramoto num grafo completo, em redes scale-free com uma distribuição de ligações P(q) ~ q-Y e na presença de campos aleatórios com magnitude constante e gaussiana. Para tal, foi considerado o método Ott-Antonsen e uma aproximação "annealed network". Num grafo completo, na presença de campos aleatórios gaussianos, e em redes scale-free com 2 < y < 5 na presença de ambos os campos aleatórios referidos, foram encontradas transições de fase contínuas. Considerando a presença de campos aleatórios com magnitude constante num grafo completo e em redes scale-free com y > 5, encontraram-se transições de fase contínua (h < √2) e descontínua (h > √2). Para uma rede SF com y = 3, foi observada uma transição de fase de ordem infinita. Os resultados do modelo de Kuramoto num grafo completo e na presença de campos aleatórios com magnitude constante foram comparados aos de simulações, tendo-se verificado uma boa concordância. Verifica-se que, independentemente da topologia de rede, a constante de acoplamento crítico aumenta com a magnitude do campo considerado. Na topologia de rede scale-free, concluiu-se que o valor do acoplamento crítico diminui à medida que valor de y diminui e que o grau de sincronização aumenta com o aumento do número médio das ligações na rede. A presença de campos aleatórios com magnitude gaussiana num grafo completo e numa rede scale-free com y > 2 não destrói a transição de fase contínua e não altera o comportamento crítico do modelo de Kuramoto. |
id |
RCAP_efd19cfa65feef6a32dd62954b9a2a5c |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/15940 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Modelo de Kuramoto com campos aleatórios em redes complexasFísicaRedes complexasTransição de fasesSincronizaçãoCampos aleatóriosNeste trabalho é estudado o modelo de Kuramoto num grafo completo, em redes scale-free com uma distribuição de ligações P(q) ~ q-Y e na presença de campos aleatórios com magnitude constante e gaussiana. Para tal, foi considerado o método Ott-Antonsen e uma aproximação "annealed network". Num grafo completo, na presença de campos aleatórios gaussianos, e em redes scale-free com 2 < y < 5 na presença de ambos os campos aleatórios referidos, foram encontradas transições de fase contínuas. Considerando a presença de campos aleatórios com magnitude constante num grafo completo e em redes scale-free com y > 5, encontraram-se transições de fase contínua (h < √2) e descontínua (h > √2). Para uma rede SF com y = 3, foi observada uma transição de fase de ordem infinita. Os resultados do modelo de Kuramoto num grafo completo e na presença de campos aleatórios com magnitude constante foram comparados aos de simulações, tendo-se verificado uma boa concordância. Verifica-se que, independentemente da topologia de rede, a constante de acoplamento crítico aumenta com a magnitude do campo considerado. Na topologia de rede scale-free, concluiu-se que o valor do acoplamento crítico diminui à medida que valor de y diminui e que o grau de sincronização aumenta com o aumento do número médio das ligações na rede. A presença de campos aleatórios com magnitude gaussiana num grafo completo e numa rede scale-free com y > 2 não destrói a transição de fase contínua e não altera o comportamento crítico do modelo de Kuramoto.In the present work, a random field Kuramoto model is studied in complete graphs and scale-free networks with the degree distribution P(q) ~ q-Y, taking into account constant random fields with constant magnitude as well as gaussian distributed. For this purpose, the Ott-Antonsen method and the annealed-network approximation are used. A continuous phase transition is found in the case of complete graph and gaussian random fields, and in the case of scale-free networks with 2 < y < 5 in the presence of random fields with both constant and gaussian magnitude. In the case of random fields with a constant magnitude and the architectures: complete graph and scale-free network with y > 5, both first (h > √2) and second (h < √2) order phase transition are found. In a scale-free network with y = 3, it is revealed an infinite order phase transition. The numerical results for random field Kuramoto model with constant magnitude in complete graph are compared to simulations and a good agreement is found between the theoretical approach and simulations. It is shown that the critical coupling increases when increasing the field magnitude, independently of network topology. For scale-free networks, the critical coupling decreases when decreasing y and the synchronization degree increases when increasing the mean degree of the network. In the case of complete graph and a scale-free network with y > 2, gaussian random fields do not destroy the continuous phase transition and do not change critical behavior of the Kuramoto model.Universidade de Aveiro2018-07-20T14:00:55Z2015-12-10T00:00:00Z2015-12-102016-12-09T13:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/15940TID:201573725porLopes, Elodie Múriasinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:29:34Zoai:ria.ua.pt:10773/15940Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:51:11.496519Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Modelo de Kuramoto com campos aleatórios em redes complexas |
title |
Modelo de Kuramoto com campos aleatórios em redes complexas |
spellingShingle |
Modelo de Kuramoto com campos aleatórios em redes complexas Lopes, Elodie Múrias Física Redes complexas Transição de fases Sincronização Campos aleatórios |
title_short |
Modelo de Kuramoto com campos aleatórios em redes complexas |
title_full |
Modelo de Kuramoto com campos aleatórios em redes complexas |
title_fullStr |
Modelo de Kuramoto com campos aleatórios em redes complexas |
title_full_unstemmed |
Modelo de Kuramoto com campos aleatórios em redes complexas |
title_sort |
Modelo de Kuramoto com campos aleatórios em redes complexas |
author |
Lopes, Elodie Múrias |
author_facet |
Lopes, Elodie Múrias |
author_role |
author |
dc.contributor.author.fl_str_mv |
Lopes, Elodie Múrias |
dc.subject.por.fl_str_mv |
Física Redes complexas Transição de fases Sincronização Campos aleatórios |
topic |
Física Redes complexas Transição de fases Sincronização Campos aleatórios |
description |
Neste trabalho é estudado o modelo de Kuramoto num grafo completo, em redes scale-free com uma distribuição de ligações P(q) ~ q-Y e na presença de campos aleatórios com magnitude constante e gaussiana. Para tal, foi considerado o método Ott-Antonsen e uma aproximação "annealed network". Num grafo completo, na presença de campos aleatórios gaussianos, e em redes scale-free com 2 < y < 5 na presença de ambos os campos aleatórios referidos, foram encontradas transições de fase contínuas. Considerando a presença de campos aleatórios com magnitude constante num grafo completo e em redes scale-free com y > 5, encontraram-se transições de fase contínua (h < √2) e descontínua (h > √2). Para uma rede SF com y = 3, foi observada uma transição de fase de ordem infinita. Os resultados do modelo de Kuramoto num grafo completo e na presença de campos aleatórios com magnitude constante foram comparados aos de simulações, tendo-se verificado uma boa concordância. Verifica-se que, independentemente da topologia de rede, a constante de acoplamento crítico aumenta com a magnitude do campo considerado. Na topologia de rede scale-free, concluiu-se que o valor do acoplamento crítico diminui à medida que valor de y diminui e que o grau de sincronização aumenta com o aumento do número médio das ligações na rede. A presença de campos aleatórios com magnitude gaussiana num grafo completo e numa rede scale-free com y > 2 não destrói a transição de fase contínua e não altera o comportamento crítico do modelo de Kuramoto. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12-10T00:00:00Z 2015-12-10 2016-12-09T13:00:00Z 2018-07-20T14:00:55Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/15940 TID:201573725 |
url |
http://hdl.handle.net/10773/15940 |
identifier_str_mv |
TID:201573725 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade de Aveiro |
publisher.none.fl_str_mv |
Universidade de Aveiro |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137561101205504 |