Prediction of bioactive compounds activity against wood contaminant fungi using artificial neural networks

Detalhes bibliográficos
Autor(a) principal: Vicente, Henrique
Data de Publicação: 2013
Outros Autores: Roseiro, José C., Arteiro, José M., Neves, José, Caldeira, A. Teresa
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/32277
Resumo: Biopesticides based on natural endophytic bacteria to control plant diseases are an ecological alternative to the chemical treatments. Bacillus species produce a wide variety of metabolites with biological activity like iturinic lipopeptides. This work addresses the production of biopesticides based on natural endophytic bacteria, isolated from Quercus suber. Artificial Neural Networks were used to maximize the percentage of inhibition triggered by antifungal activity of bioactive compounds produced by Bacillus amyloliquefaciens. The active compounds, produced in liquid cultures, inhibited the growth of fifteen fungi and exhibited a broader spectrum of antifungal activity against surface contaminant fungi, blue stain fungi and phytopathogenic fungi. A 19-7-6-1 neural network was selected to predict the percentage of inhibition produced by antifungal bioactive compounds. A good match among the observed and predicted values was obtained with the R2 values varying between 0.9965 – 0.9971 and 0.9974 – 0.9989 for training and test sets. The 19-7-6-1 neural network was used to establish the dilution rates that maximize the production of antifungal bioactive compounds, namely 0.25 h-1 for surface contaminant fungi, 0.45 h-1 for blue stain fungi and between 0.30 and 0.40 h-1 for phytopathogenic fungi. Artificial neural networks show great potential in the modelling and optimization of these bioprocesses.
id RCAP_f076e9b4bb7ed34e6a356c4c9f17c99b
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/32277
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Prediction of bioactive compounds activity against wood contaminant fungi using artificial neural networksAntifungal activityArtificial neural networksBacillus amyloliquefaciensIntelligent predictive modelsPhyto-pathogenic FungiCiências Agrárias::Biotecnologia AgráriaBiopesticides based on natural endophytic bacteria to control plant diseases are an ecological alternative to the chemical treatments. Bacillus species produce a wide variety of metabolites with biological activity like iturinic lipopeptides. This work addresses the production of biopesticides based on natural endophytic bacteria, isolated from Quercus suber. Artificial Neural Networks were used to maximize the percentage of inhibition triggered by antifungal activity of bioactive compounds produced by Bacillus amyloliquefaciens. The active compounds, produced in liquid cultures, inhibited the growth of fifteen fungi and exhibited a broader spectrum of antifungal activity against surface contaminant fungi, blue stain fungi and phytopathogenic fungi. A 19-7-6-1 neural network was selected to predict the percentage of inhibition produced by antifungal bioactive compounds. A good match among the observed and predicted values was obtained with the R2 values varying between 0.9965 – 0.9971 and 0.9974 – 0.9989 for training and test sets. The 19-7-6-1 neural network was used to establish the dilution rates that maximize the production of antifungal bioactive compounds, namely 0.25 h-1 for surface contaminant fungi, 0.45 h-1 for blue stain fungi and between 0.30 and 0.40 h-1 for phytopathogenic fungi. Artificial neural networks show great potential in the modelling and optimization of these bioprocesses.Les biopesticides à base de bactéries endophytes naturelles pour lutter contre les maladies des plantes constituent une alternative écologique aux traitements chimiques. Les espèces de Bacillus produisent une grande variété de métabolites biologiquement actifs tels que les lipopeptides ituriniques. Cette étude porte sur la production de biopesticides par des bactéries endophytes naturelles isolées du Quercus suber L. Des réseaux neuronaux artificiels ont été utilisés pour maximiser le pourcentage d’inhibition provoquée par l’activité antifongique des composés bioactifs produits par Bacillus amyloliquefaciens. Les composés actifs, produits en culture liquide, ont inhibé la croissance de 15 champignons et avaient un spectre d’activé antifongique plus large contre les contaminants fongiques de surface, les champignons de bleuissement et les champignons phytopathogènes. Un réseau neuronal 19-7-6-1 a été choisi pour prédire le pourcentage d’inhibition produit par les composés bioactifs antifongiques. Une bonne concordance entre les valeurs observées et prédites a été obtenue; les valeurs de R2 variaient de 0,9965 a` 0,9971 et de 0,9974 a` 0,9989 pour les bases d’apprentissage et de test. Le réseau neuronal 19-7-6-1 a été utilisé pour établir les taux de dilution qui maximisent la production des composés bioactifs antifongiques, nommément 0,25 h−1 pour les contaminants fongiques de surface, 0,45 h−1 pour les champignons de bleuissement et entre 0,30 et 0,40 h−1 pour les champignons phytopathogènes. Les réseaux neuronaux artificiels ont un potentiel élevé pour modéliser et optimiser ces processus biologiques.National Research Council of CanadaUniversidade do MinhoVicente, HenriqueRoseiro, José C.Arteiro, José M.Neves, JoséCaldeira, A. Teresa20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/32277eng1208-6037http://www.nrcresearchpress.com/doi/abs/10.1139/cjfr-2013-0142#.VIB__Ycig7ginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:05:47Zoai:repositorium.sdum.uminho.pt:1822/32277Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:56:20.799721Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Prediction of bioactive compounds activity against wood contaminant fungi using artificial neural networks
title Prediction of bioactive compounds activity against wood contaminant fungi using artificial neural networks
spellingShingle Prediction of bioactive compounds activity against wood contaminant fungi using artificial neural networks
Vicente, Henrique
Antifungal activity
Artificial neural networks
Bacillus amyloliquefaciens
Intelligent predictive models
Phyto-pathogenic Fungi
Ciências Agrárias::Biotecnologia Agrária
title_short Prediction of bioactive compounds activity against wood contaminant fungi using artificial neural networks
title_full Prediction of bioactive compounds activity against wood contaminant fungi using artificial neural networks
title_fullStr Prediction of bioactive compounds activity against wood contaminant fungi using artificial neural networks
title_full_unstemmed Prediction of bioactive compounds activity against wood contaminant fungi using artificial neural networks
title_sort Prediction of bioactive compounds activity against wood contaminant fungi using artificial neural networks
author Vicente, Henrique
author_facet Vicente, Henrique
Roseiro, José C.
Arteiro, José M.
Neves, José
Caldeira, A. Teresa
author_role author
author2 Roseiro, José C.
Arteiro, José M.
Neves, José
Caldeira, A. Teresa
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Vicente, Henrique
Roseiro, José C.
Arteiro, José M.
Neves, José
Caldeira, A. Teresa
dc.subject.por.fl_str_mv Antifungal activity
Artificial neural networks
Bacillus amyloliquefaciens
Intelligent predictive models
Phyto-pathogenic Fungi
Ciências Agrárias::Biotecnologia Agrária
topic Antifungal activity
Artificial neural networks
Bacillus amyloliquefaciens
Intelligent predictive models
Phyto-pathogenic Fungi
Ciências Agrárias::Biotecnologia Agrária
description Biopesticides based on natural endophytic bacteria to control plant diseases are an ecological alternative to the chemical treatments. Bacillus species produce a wide variety of metabolites with biological activity like iturinic lipopeptides. This work addresses the production of biopesticides based on natural endophytic bacteria, isolated from Quercus suber. Artificial Neural Networks were used to maximize the percentage of inhibition triggered by antifungal activity of bioactive compounds produced by Bacillus amyloliquefaciens. The active compounds, produced in liquid cultures, inhibited the growth of fifteen fungi and exhibited a broader spectrum of antifungal activity against surface contaminant fungi, blue stain fungi and phytopathogenic fungi. A 19-7-6-1 neural network was selected to predict the percentage of inhibition produced by antifungal bioactive compounds. A good match among the observed and predicted values was obtained with the R2 values varying between 0.9965 – 0.9971 and 0.9974 – 0.9989 for training and test sets. The 19-7-6-1 neural network was used to establish the dilution rates that maximize the production of antifungal bioactive compounds, namely 0.25 h-1 for surface contaminant fungi, 0.45 h-1 for blue stain fungi and between 0.30 and 0.40 h-1 for phytopathogenic fungi. Artificial neural networks show great potential in the modelling and optimization of these bioprocesses.
publishDate 2013
dc.date.none.fl_str_mv 2013
2013-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/32277
url http://hdl.handle.net/1822/32277
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1208-6037
http://www.nrcresearchpress.com/doi/abs/10.1139/cjfr-2013-0142#.VIB__Ycig7g
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv National Research Council of Canada
publisher.none.fl_str_mv National Research Council of Canada
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132350540414976