Prediction of bioactive compounds activity against wood contaminant fungi using artificial neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/32277 |
Resumo: | Biopesticides based on natural endophytic bacteria to control plant diseases are an ecological alternative to the chemical treatments. Bacillus species produce a wide variety of metabolites with biological activity like iturinic lipopeptides. This work addresses the production of biopesticides based on natural endophytic bacteria, isolated from Quercus suber. Artificial Neural Networks were used to maximize the percentage of inhibition triggered by antifungal activity of bioactive compounds produced by Bacillus amyloliquefaciens. The active compounds, produced in liquid cultures, inhibited the growth of fifteen fungi and exhibited a broader spectrum of antifungal activity against surface contaminant fungi, blue stain fungi and phytopathogenic fungi. A 19-7-6-1 neural network was selected to predict the percentage of inhibition produced by antifungal bioactive compounds. A good match among the observed and predicted values was obtained with the R2 values varying between 0.9965 – 0.9971 and 0.9974 – 0.9989 for training and test sets. The 19-7-6-1 neural network was used to establish the dilution rates that maximize the production of antifungal bioactive compounds, namely 0.25 h-1 for surface contaminant fungi, 0.45 h-1 for blue stain fungi and between 0.30 and 0.40 h-1 for phytopathogenic fungi. Artificial neural networks show great potential in the modelling and optimization of these bioprocesses. |
id |
RCAP_f076e9b4bb7ed34e6a356c4c9f17c99b |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/32277 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Prediction of bioactive compounds activity against wood contaminant fungi using artificial neural networksAntifungal activityArtificial neural networksBacillus amyloliquefaciensIntelligent predictive modelsPhyto-pathogenic FungiCiências Agrárias::Biotecnologia AgráriaBiopesticides based on natural endophytic bacteria to control plant diseases are an ecological alternative to the chemical treatments. Bacillus species produce a wide variety of metabolites with biological activity like iturinic lipopeptides. This work addresses the production of biopesticides based on natural endophytic bacteria, isolated from Quercus suber. Artificial Neural Networks were used to maximize the percentage of inhibition triggered by antifungal activity of bioactive compounds produced by Bacillus amyloliquefaciens. The active compounds, produced in liquid cultures, inhibited the growth of fifteen fungi and exhibited a broader spectrum of antifungal activity against surface contaminant fungi, blue stain fungi and phytopathogenic fungi. A 19-7-6-1 neural network was selected to predict the percentage of inhibition produced by antifungal bioactive compounds. A good match among the observed and predicted values was obtained with the R2 values varying between 0.9965 – 0.9971 and 0.9974 – 0.9989 for training and test sets. The 19-7-6-1 neural network was used to establish the dilution rates that maximize the production of antifungal bioactive compounds, namely 0.25 h-1 for surface contaminant fungi, 0.45 h-1 for blue stain fungi and between 0.30 and 0.40 h-1 for phytopathogenic fungi. Artificial neural networks show great potential in the modelling and optimization of these bioprocesses.Les biopesticides à base de bactéries endophytes naturelles pour lutter contre les maladies des plantes constituent une alternative écologique aux traitements chimiques. Les espèces de Bacillus produisent une grande variété de métabolites biologiquement actifs tels que les lipopeptides ituriniques. Cette étude porte sur la production de biopesticides par des bactéries endophytes naturelles isolées du Quercus suber L. Des réseaux neuronaux artificiels ont été utilisés pour maximiser le pourcentage d’inhibition provoquée par l’activité antifongique des composés bioactifs produits par Bacillus amyloliquefaciens. Les composés actifs, produits en culture liquide, ont inhibé la croissance de 15 champignons et avaient un spectre d’activé antifongique plus large contre les contaminants fongiques de surface, les champignons de bleuissement et les champignons phytopathogènes. Un réseau neuronal 19-7-6-1 a été choisi pour prédire le pourcentage d’inhibition produit par les composés bioactifs antifongiques. Une bonne concordance entre les valeurs observées et prédites a été obtenue; les valeurs de R2 variaient de 0,9965 a` 0,9971 et de 0,9974 a` 0,9989 pour les bases d’apprentissage et de test. Le réseau neuronal 19-7-6-1 a été utilisé pour établir les taux de dilution qui maximisent la production des composés bioactifs antifongiques, nommément 0,25 h−1 pour les contaminants fongiques de surface, 0,45 h−1 pour les champignons de bleuissement et entre 0,30 et 0,40 h−1 pour les champignons phytopathogènes. Les réseaux neuronaux artificiels ont un potentiel élevé pour modéliser et optimiser ces processus biologiques.National Research Council of CanadaUniversidade do MinhoVicente, HenriqueRoseiro, José C.Arteiro, José M.Neves, JoséCaldeira, A. Teresa20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/32277eng1208-6037http://www.nrcresearchpress.com/doi/abs/10.1139/cjfr-2013-0142#.VIB__Ycig7ginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:05:47Zoai:repositorium.sdum.uminho.pt:1822/32277Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:56:20.799721Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Prediction of bioactive compounds activity against wood contaminant fungi using artificial neural networks |
title |
Prediction of bioactive compounds activity against wood contaminant fungi using artificial neural networks |
spellingShingle |
Prediction of bioactive compounds activity against wood contaminant fungi using artificial neural networks Vicente, Henrique Antifungal activity Artificial neural networks Bacillus amyloliquefaciens Intelligent predictive models Phyto-pathogenic Fungi Ciências Agrárias::Biotecnologia Agrária |
title_short |
Prediction of bioactive compounds activity against wood contaminant fungi using artificial neural networks |
title_full |
Prediction of bioactive compounds activity against wood contaminant fungi using artificial neural networks |
title_fullStr |
Prediction of bioactive compounds activity against wood contaminant fungi using artificial neural networks |
title_full_unstemmed |
Prediction of bioactive compounds activity against wood contaminant fungi using artificial neural networks |
title_sort |
Prediction of bioactive compounds activity against wood contaminant fungi using artificial neural networks |
author |
Vicente, Henrique |
author_facet |
Vicente, Henrique Roseiro, José C. Arteiro, José M. Neves, José Caldeira, A. Teresa |
author_role |
author |
author2 |
Roseiro, José C. Arteiro, José M. Neves, José Caldeira, A. Teresa |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Vicente, Henrique Roseiro, José C. Arteiro, José M. Neves, José Caldeira, A. Teresa |
dc.subject.por.fl_str_mv |
Antifungal activity Artificial neural networks Bacillus amyloliquefaciens Intelligent predictive models Phyto-pathogenic Fungi Ciências Agrárias::Biotecnologia Agrária |
topic |
Antifungal activity Artificial neural networks Bacillus amyloliquefaciens Intelligent predictive models Phyto-pathogenic Fungi Ciências Agrárias::Biotecnologia Agrária |
description |
Biopesticides based on natural endophytic bacteria to control plant diseases are an ecological alternative to the chemical treatments. Bacillus species produce a wide variety of metabolites with biological activity like iturinic lipopeptides. This work addresses the production of biopesticides based on natural endophytic bacteria, isolated from Quercus suber. Artificial Neural Networks were used to maximize the percentage of inhibition triggered by antifungal activity of bioactive compounds produced by Bacillus amyloliquefaciens. The active compounds, produced in liquid cultures, inhibited the growth of fifteen fungi and exhibited a broader spectrum of antifungal activity against surface contaminant fungi, blue stain fungi and phytopathogenic fungi. A 19-7-6-1 neural network was selected to predict the percentage of inhibition produced by antifungal bioactive compounds. A good match among the observed and predicted values was obtained with the R2 values varying between 0.9965 – 0.9971 and 0.9974 – 0.9989 for training and test sets. The 19-7-6-1 neural network was used to establish the dilution rates that maximize the production of antifungal bioactive compounds, namely 0.25 h-1 for surface contaminant fungi, 0.45 h-1 for blue stain fungi and between 0.30 and 0.40 h-1 for phytopathogenic fungi. Artificial neural networks show great potential in the modelling and optimization of these bioprocesses. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 2013-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/32277 |
url |
http://hdl.handle.net/1822/32277 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1208-6037 http://www.nrcresearchpress.com/doi/abs/10.1139/cjfr-2013-0142#.VIB__Ycig7g |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
National Research Council of Canada |
publisher.none.fl_str_mv |
National Research Council of Canada |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132350540414976 |