Determination of harmonic parameters in pathological voices-efficient algorithm

Detalhes bibliográficos
Autor(a) principal: Fernandes, Joana Filipa Teixeira
Data de Publicação: 2022
Outros Autores: Freitas, Diamantino Silva, Candido Junior, Arnaldo, Teixeira, João Paulo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10198/25093
Resumo: Featured Application The paper describes a low-complexity/efficient algorithm to determine the short-term Autocorrelation, HNR, and NHR in sustained vowel audios, to be used in stand-alone devices with low computational power. These parameters can be used as input features of a smart medical decision support system for speech pathology diagnosis. The harmonic parameters Autocorrelation, Harmonic to Noise Ratio (HNR), and Noise to Harmonic Ratio are related to vocal quality, providing alternative measures of the harmonic energy of a speech signal. They will be used as input resources for an intelligent medical decision support system for the diagnosis of speech pathology. An efficient algorithm is important when implementing it on low-power devices. This article presents an algorithm that determines these parameters by optimizing the window type and length. The method used comparatively analyzes the values of the algorithm, with different combinations of window and size and a reference value. Hamming, Hanning, and Blackman windows with lengths of 3, 6, 12, and 24 glottal cycles and various sampling frequencies were investigated. As a result, we present an efficient algorithm that determines the parameters using the Hanning window with a length of six glottal cycles. The mean difference of Autocorrelation is less than 0.004, and that of HNR is less than 0.42 dB. In conclusion, this algorithm allows extraction of the parameters close to the reference values. In Autocorrelation, there are no significant effects of sampling frequency. However, it should be used cautiously for HNR with lower sampling rates.
id RCAP_f0f09fa90417e59407476761eb1a63c2
oai_identifier_str oai:bibliotecadigital.ipb.pt:10198/25093
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Determination of harmonic parameters in pathological voices-efficient algorithmVoice disorder parametersAutocorrelationHarmonic to noise ratioAutocorrelation algorithmHNR algorithmNoise to harmonic ratioFeatured Application The paper describes a low-complexity/efficient algorithm to determine the short-term Autocorrelation, HNR, and NHR in sustained vowel audios, to be used in stand-alone devices with low computational power. These parameters can be used as input features of a smart medical decision support system for speech pathology diagnosis. The harmonic parameters Autocorrelation, Harmonic to Noise Ratio (HNR), and Noise to Harmonic Ratio are related to vocal quality, providing alternative measures of the harmonic energy of a speech signal. They will be used as input resources for an intelligent medical decision support system for the diagnosis of speech pathology. An efficient algorithm is important when implementing it on low-power devices. This article presents an algorithm that determines these parameters by optimizing the window type and length. The method used comparatively analyzes the values of the algorithm, with different combinations of window and size and a reference value. Hamming, Hanning, and Blackman windows with lengths of 3, 6, 12, and 24 glottal cycles and various sampling frequencies were investigated. As a result, we present an efficient algorithm that determines the parameters using the Hanning window with a length of six glottal cycles. The mean difference of Autocorrelation is less than 0.004, and that of HNR is less than 0.42 dB. In conclusion, this algorithm allows extraction of the parameters close to the reference values. In Autocorrelation, there are no significant effects of sampling frequency. However, it should be used cautiously for HNR with lower sampling rates.MDPIBiblioteca Digital do IPBFernandes, Joana Filipa TeixeiraFreitas, Diamantino SilvaCandido Junior, ArnaldoTeixeira, João Paulo2022-02-21T16:21:25Z20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10198/25093engFernandes, Joana Filipa Teixeira; Freitas, Diamantino Silva; Candido Junior, Arnaldo; Teixeira, João Paulo (2023). Determination of harmonic parameters in pathological voices-efficient algorithm. Applied. eISSN 2076-3417. 13:4, p. 1-2110.3390/app130423332076-3417info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-07T01:18:28Zoai:bibliotecadigital.ipb.pt:10198/25093Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:15:48.842804Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Determination of harmonic parameters in pathological voices-efficient algorithm
title Determination of harmonic parameters in pathological voices-efficient algorithm
spellingShingle Determination of harmonic parameters in pathological voices-efficient algorithm
Fernandes, Joana Filipa Teixeira
Voice disorder parameters
Autocorrelation
Harmonic to noise ratio
Autocorrelation algorithm
HNR algorithm
Noise to harmonic ratio
title_short Determination of harmonic parameters in pathological voices-efficient algorithm
title_full Determination of harmonic parameters in pathological voices-efficient algorithm
title_fullStr Determination of harmonic parameters in pathological voices-efficient algorithm
title_full_unstemmed Determination of harmonic parameters in pathological voices-efficient algorithm
title_sort Determination of harmonic parameters in pathological voices-efficient algorithm
author Fernandes, Joana Filipa Teixeira
author_facet Fernandes, Joana Filipa Teixeira
Freitas, Diamantino Silva
Candido Junior, Arnaldo
Teixeira, João Paulo
author_role author
author2 Freitas, Diamantino Silva
Candido Junior, Arnaldo
Teixeira, João Paulo
author2_role author
author
author
dc.contributor.none.fl_str_mv Biblioteca Digital do IPB
dc.contributor.author.fl_str_mv Fernandes, Joana Filipa Teixeira
Freitas, Diamantino Silva
Candido Junior, Arnaldo
Teixeira, João Paulo
dc.subject.por.fl_str_mv Voice disorder parameters
Autocorrelation
Harmonic to noise ratio
Autocorrelation algorithm
HNR algorithm
Noise to harmonic ratio
topic Voice disorder parameters
Autocorrelation
Harmonic to noise ratio
Autocorrelation algorithm
HNR algorithm
Noise to harmonic ratio
description Featured Application The paper describes a low-complexity/efficient algorithm to determine the short-term Autocorrelation, HNR, and NHR in sustained vowel audios, to be used in stand-alone devices with low computational power. These parameters can be used as input features of a smart medical decision support system for speech pathology diagnosis. The harmonic parameters Autocorrelation, Harmonic to Noise Ratio (HNR), and Noise to Harmonic Ratio are related to vocal quality, providing alternative measures of the harmonic energy of a speech signal. They will be used as input resources for an intelligent medical decision support system for the diagnosis of speech pathology. An efficient algorithm is important when implementing it on low-power devices. This article presents an algorithm that determines these parameters by optimizing the window type and length. The method used comparatively analyzes the values of the algorithm, with different combinations of window and size and a reference value. Hamming, Hanning, and Blackman windows with lengths of 3, 6, 12, and 24 glottal cycles and various sampling frequencies were investigated. As a result, we present an efficient algorithm that determines the parameters using the Hanning window with a length of six glottal cycles. The mean difference of Autocorrelation is less than 0.004, and that of HNR is less than 0.42 dB. In conclusion, this algorithm allows extraction of the parameters close to the reference values. In Autocorrelation, there are no significant effects of sampling frequency. However, it should be used cautiously for HNR with lower sampling rates.
publishDate 2022
dc.date.none.fl_str_mv 2022-02-21T16:21:25Z
2023
2023-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10198/25093
url http://hdl.handle.net/10198/25093
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Fernandes, Joana Filipa Teixeira; Freitas, Diamantino Silva; Candido Junior, Arnaldo; Teixeira, João Paulo (2023). Determination of harmonic parameters in pathological voices-efficient algorithm. Applied. eISSN 2076-3417. 13:4, p. 1-21
10.3390/app13042333
2076-3417
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135441723588608