Determination of harmonic parameters in pathological voices-efficient algorithm
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10198/25093 |
Resumo: | Featured Application The paper describes a low-complexity/efficient algorithm to determine the short-term Autocorrelation, HNR, and NHR in sustained vowel audios, to be used in stand-alone devices with low computational power. These parameters can be used as input features of a smart medical decision support system for speech pathology diagnosis. The harmonic parameters Autocorrelation, Harmonic to Noise Ratio (HNR), and Noise to Harmonic Ratio are related to vocal quality, providing alternative measures of the harmonic energy of a speech signal. They will be used as input resources for an intelligent medical decision support system for the diagnosis of speech pathology. An efficient algorithm is important when implementing it on low-power devices. This article presents an algorithm that determines these parameters by optimizing the window type and length. The method used comparatively analyzes the values of the algorithm, with different combinations of window and size and a reference value. Hamming, Hanning, and Blackman windows with lengths of 3, 6, 12, and 24 glottal cycles and various sampling frequencies were investigated. As a result, we present an efficient algorithm that determines the parameters using the Hanning window with a length of six glottal cycles. The mean difference of Autocorrelation is less than 0.004, and that of HNR is less than 0.42 dB. In conclusion, this algorithm allows extraction of the parameters close to the reference values. In Autocorrelation, there are no significant effects of sampling frequency. However, it should be used cautiously for HNR with lower sampling rates. |
id |
RCAP_f0f09fa90417e59407476761eb1a63c2 |
---|---|
oai_identifier_str |
oai:bibliotecadigital.ipb.pt:10198/25093 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Determination of harmonic parameters in pathological voices-efficient algorithmVoice disorder parametersAutocorrelationHarmonic to noise ratioAutocorrelation algorithmHNR algorithmNoise to harmonic ratioFeatured Application The paper describes a low-complexity/efficient algorithm to determine the short-term Autocorrelation, HNR, and NHR in sustained vowel audios, to be used in stand-alone devices with low computational power. These parameters can be used as input features of a smart medical decision support system for speech pathology diagnosis. The harmonic parameters Autocorrelation, Harmonic to Noise Ratio (HNR), and Noise to Harmonic Ratio are related to vocal quality, providing alternative measures of the harmonic energy of a speech signal. They will be used as input resources for an intelligent medical decision support system for the diagnosis of speech pathology. An efficient algorithm is important when implementing it on low-power devices. This article presents an algorithm that determines these parameters by optimizing the window type and length. The method used comparatively analyzes the values of the algorithm, with different combinations of window and size and a reference value. Hamming, Hanning, and Blackman windows with lengths of 3, 6, 12, and 24 glottal cycles and various sampling frequencies were investigated. As a result, we present an efficient algorithm that determines the parameters using the Hanning window with a length of six glottal cycles. The mean difference of Autocorrelation is less than 0.004, and that of HNR is less than 0.42 dB. In conclusion, this algorithm allows extraction of the parameters close to the reference values. In Autocorrelation, there are no significant effects of sampling frequency. However, it should be used cautiously for HNR with lower sampling rates.MDPIBiblioteca Digital do IPBFernandes, Joana Filipa TeixeiraFreitas, Diamantino SilvaCandido Junior, ArnaldoTeixeira, João Paulo2022-02-21T16:21:25Z20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10198/25093engFernandes, Joana Filipa Teixeira; Freitas, Diamantino Silva; Candido Junior, Arnaldo; Teixeira, João Paulo (2023). Determination of harmonic parameters in pathological voices-efficient algorithm. Applied. eISSN 2076-3417. 13:4, p. 1-2110.3390/app130423332076-3417info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-07T01:18:28Zoai:bibliotecadigital.ipb.pt:10198/25093Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:15:48.842804Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Determination of harmonic parameters in pathological voices-efficient algorithm |
title |
Determination of harmonic parameters in pathological voices-efficient algorithm |
spellingShingle |
Determination of harmonic parameters in pathological voices-efficient algorithm Fernandes, Joana Filipa Teixeira Voice disorder parameters Autocorrelation Harmonic to noise ratio Autocorrelation algorithm HNR algorithm Noise to harmonic ratio |
title_short |
Determination of harmonic parameters in pathological voices-efficient algorithm |
title_full |
Determination of harmonic parameters in pathological voices-efficient algorithm |
title_fullStr |
Determination of harmonic parameters in pathological voices-efficient algorithm |
title_full_unstemmed |
Determination of harmonic parameters in pathological voices-efficient algorithm |
title_sort |
Determination of harmonic parameters in pathological voices-efficient algorithm |
author |
Fernandes, Joana Filipa Teixeira |
author_facet |
Fernandes, Joana Filipa Teixeira Freitas, Diamantino Silva Candido Junior, Arnaldo Teixeira, João Paulo |
author_role |
author |
author2 |
Freitas, Diamantino Silva Candido Junior, Arnaldo Teixeira, João Paulo |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Biblioteca Digital do IPB |
dc.contributor.author.fl_str_mv |
Fernandes, Joana Filipa Teixeira Freitas, Diamantino Silva Candido Junior, Arnaldo Teixeira, João Paulo |
dc.subject.por.fl_str_mv |
Voice disorder parameters Autocorrelation Harmonic to noise ratio Autocorrelation algorithm HNR algorithm Noise to harmonic ratio |
topic |
Voice disorder parameters Autocorrelation Harmonic to noise ratio Autocorrelation algorithm HNR algorithm Noise to harmonic ratio |
description |
Featured Application The paper describes a low-complexity/efficient algorithm to determine the short-term Autocorrelation, HNR, and NHR in sustained vowel audios, to be used in stand-alone devices with low computational power. These parameters can be used as input features of a smart medical decision support system for speech pathology diagnosis. The harmonic parameters Autocorrelation, Harmonic to Noise Ratio (HNR), and Noise to Harmonic Ratio are related to vocal quality, providing alternative measures of the harmonic energy of a speech signal. They will be used as input resources for an intelligent medical decision support system for the diagnosis of speech pathology. An efficient algorithm is important when implementing it on low-power devices. This article presents an algorithm that determines these parameters by optimizing the window type and length. The method used comparatively analyzes the values of the algorithm, with different combinations of window and size and a reference value. Hamming, Hanning, and Blackman windows with lengths of 3, 6, 12, and 24 glottal cycles and various sampling frequencies were investigated. As a result, we present an efficient algorithm that determines the parameters using the Hanning window with a length of six glottal cycles. The mean difference of Autocorrelation is less than 0.004, and that of HNR is less than 0.42 dB. In conclusion, this algorithm allows extraction of the parameters close to the reference values. In Autocorrelation, there are no significant effects of sampling frequency. However, it should be used cautiously for HNR with lower sampling rates. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-02-21T16:21:25Z 2023 2023-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10198/25093 |
url |
http://hdl.handle.net/10198/25093 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Fernandes, Joana Filipa Teixeira; Freitas, Diamantino Silva; Candido Junior, Arnaldo; Teixeira, João Paulo (2023). Determination of harmonic parameters in pathological voices-efficient algorithm. Applied. eISSN 2076-3417. 13:4, p. 1-21 10.3390/app13042333 2076-3417 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135441723588608 |