Fatigue detection system to aid in remote work

Detalhes bibliográficos
Autor(a) principal: Teixeira, Gonçalo Gomes
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/21495
Resumo: During the Covid-19 pandemic there was a noticeable surge in the amount of remote workers. In the aftermath of the pandemic working from home still remains a reality for many workers with noticeable impacts on the mental health of people. With the increased stress caused by current situation and the harder time establishing boundaries there was an increase in the overall stress and fatigue in workers, leading to burnouts. Fatigue detection systems are used in several areas, mainly in the automotive industry as a mean to decrease the number of accidents. This research started by approaching the Artificial Intelligence (AI) area and its domains, followed by a study of the current techniques used in order to predict fatigue. With the main ones utilising eye state, facial landmarks, electrocardiogram or heart rate. After a research into existing Fatigue detection systems was done in order to identify the strengths of solutions currently in the market, whether in the automotive industry or other applications. This thesis proposes the creation of a system able to detect fatigue in a user as well as warn him when fatigue levels increase. This system incorporates a webcam analysing the users face and performing eye state detection in order to calculate the percentage of the time the eyes are closed (PERCLOS). Heart rate data was also analysed and a model was developed in order to incorporate this data, the percentage of time the eyes are closed, the program the user has open and time of day in order to predict the level of fatigue. By combining these two different techniques this system can be more effective and more accurate in giving predictions of the level of fatigue. The review of literature showed that the conjunction of these two techniques in predicting fatigue is novelty. The developed system also contains integration with smartwatch technology in order to both harness heart rate data as well as communicate with the user via pop up notifications to inform him when fatigue levels get too high. The conclusion of this work is that eye state detection using Artificial Intelligence can achieve a high accuracy and be a reliable tool in identifying fatigue in an user. The combination of Heart Rate and PERCLOS allows the system to have a higher accuracy as well as not being completely reliant on one sensor. The creation of a fatigue prediction model was hindered by the lack of existent data in order to train a model, a problem that could be fixed with the adoption of the system in a broader scope.
id RCAP_f1d949d109745394c85a142ce6b32ed2
oai_identifier_str oai:recipp.ipp.pt:10400.22/21495
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Fatigue detection system to aid in remote workCovid-19Artificial IntelligenceComputer visionFatigue detection systemDuring the Covid-19 pandemic there was a noticeable surge in the amount of remote workers. In the aftermath of the pandemic working from home still remains a reality for many workers with noticeable impacts on the mental health of people. With the increased stress caused by current situation and the harder time establishing boundaries there was an increase in the overall stress and fatigue in workers, leading to burnouts. Fatigue detection systems are used in several areas, mainly in the automotive industry as a mean to decrease the number of accidents. This research started by approaching the Artificial Intelligence (AI) area and its domains, followed by a study of the current techniques used in order to predict fatigue. With the main ones utilising eye state, facial landmarks, electrocardiogram or heart rate. After a research into existing Fatigue detection systems was done in order to identify the strengths of solutions currently in the market, whether in the automotive industry or other applications. This thesis proposes the creation of a system able to detect fatigue in a user as well as warn him when fatigue levels increase. This system incorporates a webcam analysing the users face and performing eye state detection in order to calculate the percentage of the time the eyes are closed (PERCLOS). Heart rate data was also analysed and a model was developed in order to incorporate this data, the percentage of time the eyes are closed, the program the user has open and time of day in order to predict the level of fatigue. By combining these two different techniques this system can be more effective and more accurate in giving predictions of the level of fatigue. The review of literature showed that the conjunction of these two techniques in predicting fatigue is novelty. The developed system also contains integration with smartwatch technology in order to both harness heart rate data as well as communicate with the user via pop up notifications to inform him when fatigue levels get too high. The conclusion of this work is that eye state detection using Artificial Intelligence can achieve a high accuracy and be a reliable tool in identifying fatigue in an user. The combination of Heart Rate and PERCLOS allows the system to have a higher accuracy as well as not being completely reliant on one sensor. The creation of a fatigue prediction model was hindered by the lack of existent data in order to train a model, a problem that could be fixed with the adoption of the system in a broader scope.Durante a pandemia de Covid-19, houve um aumento notável na quantidade de trabalhadores remotos. No rescaldo da pandemia, trabalhar a partir de casa continua a ser uma realidade para muitos trabalhadores, com impactos visíveis na saúde mental das pessoas. Com o aumento do stresse causado pela situação atual e a dificuldade de estabelecer limites, houve um aumento do stresse geral e da fadiga dos trabalhadores, levando ao esgotamento. Os sistemas de detecção de fadiga são utilizados em diversas áreas, principalmente na indústria automobilística como forma de diminuir o número de acidentes. Este estudo começou por abordar a área de Inteligência Artificial (IA) e os seus domínios, seguida de um estudo das técnicas atuais utilizadas para prever a fadiga. Com os principais utilizando o estado dos olhos, pontos de referência faciais, eletrocardiograma ou frequência cardíaca. Depois foi feita uma pesquisa sobre os sistemas de detecção de fadiga existentes de forma a identificar os pontos fortes das soluções actualmente no mercado, quer seja na indústria automóvel ou outras aplicações. Esta dissertação propõe a criação de um sistema capaz de detectar fadiga num utilizador, bem como alertar quando os níveis de fadiga aumentam. Este sistema incorpora uma webcam que analisa a face do utilizador e realiza a detecção do estado dos olhos para calcular a percentagem de tempo em que os olhos estão fechados (PERCLOS). Os dados de frequência cardíaca também foram analisados e um modelo foi desenvolvido para incorporar estes dados, a percentagem de tempo que os olhos ficam fechados, o programa que o utilizador tem aberto e a hora do dia para prever o nível de fadiga. Ao combinar essas duas técnicas diferentes, este sistema pode ser mais eficaz e mais preciso em fornecer previsões do nível de fadiga. A revisão da literatura mostrou que a conjunção dessas duas técnicas na previsão da fadiga é novidade. O sistema desenvolvido também contém integração com a tecnologia smartwatch para aproveitar os dados da frequência cardíaca e comunicar com o utilizador por meio de notificações pop-up para informá-lo quando os níveis de fadiga se encontrarem altos. A conclusão deste trabalho é que a detecção do estado ocular usando Inteligência Artificial pode alcançar uma alta precisão e ser uma ferramenta confiável na identificação de fadiga num utilizador. A combinação da frequência cardíaca e PERCLOS permite que o sistema tenha maior precisão, além de não depender completamente de um unico sensor. A criação de um modelo de previsão de fadiga foi dificultada pela falta de dados existentes para treinar um modelo, problema que poderia ser colmatado com a adoção do sistema numa população maior.Martins, António Constantino LopesRepositório Científico do Instituto Politécnico do PortoTeixeira, Gonçalo Gomes2023-01-13T11:09:34Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/21495TID:203112725enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:17:20Zoai:recipp.ipp.pt:10400.22/21495Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:41:33.372245Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Fatigue detection system to aid in remote work
title Fatigue detection system to aid in remote work
spellingShingle Fatigue detection system to aid in remote work
Teixeira, Gonçalo Gomes
Covid-19
Artificial Intelligence
Computer vision
Fatigue detection system
title_short Fatigue detection system to aid in remote work
title_full Fatigue detection system to aid in remote work
title_fullStr Fatigue detection system to aid in remote work
title_full_unstemmed Fatigue detection system to aid in remote work
title_sort Fatigue detection system to aid in remote work
author Teixeira, Gonçalo Gomes
author_facet Teixeira, Gonçalo Gomes
author_role author
dc.contributor.none.fl_str_mv Martins, António Constantino Lopes
Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Teixeira, Gonçalo Gomes
dc.subject.por.fl_str_mv Covid-19
Artificial Intelligence
Computer vision
Fatigue detection system
topic Covid-19
Artificial Intelligence
Computer vision
Fatigue detection system
description During the Covid-19 pandemic there was a noticeable surge in the amount of remote workers. In the aftermath of the pandemic working from home still remains a reality for many workers with noticeable impacts on the mental health of people. With the increased stress caused by current situation and the harder time establishing boundaries there was an increase in the overall stress and fatigue in workers, leading to burnouts. Fatigue detection systems are used in several areas, mainly in the automotive industry as a mean to decrease the number of accidents. This research started by approaching the Artificial Intelligence (AI) area and its domains, followed by a study of the current techniques used in order to predict fatigue. With the main ones utilising eye state, facial landmarks, electrocardiogram or heart rate. After a research into existing Fatigue detection systems was done in order to identify the strengths of solutions currently in the market, whether in the automotive industry or other applications. This thesis proposes the creation of a system able to detect fatigue in a user as well as warn him when fatigue levels increase. This system incorporates a webcam analysing the users face and performing eye state detection in order to calculate the percentage of the time the eyes are closed (PERCLOS). Heart rate data was also analysed and a model was developed in order to incorporate this data, the percentage of time the eyes are closed, the program the user has open and time of day in order to predict the level of fatigue. By combining these two different techniques this system can be more effective and more accurate in giving predictions of the level of fatigue. The review of literature showed that the conjunction of these two techniques in predicting fatigue is novelty. The developed system also contains integration with smartwatch technology in order to both harness heart rate data as well as communicate with the user via pop up notifications to inform him when fatigue levels get too high. The conclusion of this work is that eye state detection using Artificial Intelligence can achieve a high accuracy and be a reliable tool in identifying fatigue in an user. The combination of Heart Rate and PERCLOS allows the system to have a higher accuracy as well as not being completely reliant on one sensor. The creation of a fatigue prediction model was hindered by the lack of existent data in order to train a model, a problem that could be fixed with the adoption of the system in a broader scope.
publishDate 2022
dc.date.none.fl_str_mv 2022
2022-01-01T00:00:00Z
2023-01-13T11:09:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/21495
TID:203112725
url http://hdl.handle.net/10400.22/21495
identifier_str_mv TID:203112725
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131503034105856